GSTDTAP

浏览/检索结果: 共12条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Molecular tuning of CO2-to-ethylene conversion 期刊论文
NATURE, 2020, 577 (7791) : 509-+
作者:  Li, Fengwang;  39;Brien, Colin P.
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

The electrocatalytic reduction of carbon dioxide, powered by renewable electricity, to produce valuable fuels and feedstocks provides a sustainable and carbon-neutral approach to the storage of energy produced by intermittent renewable sources(1). However, the highly selective generation of economically desirable products such as ethylene from the carbon dioxide reduction reaction (CO2RR) remains a challenge(2). Tuning the stabilities of intermediates to favour a desired reaction pathway can improve selectivity(3-5), and this has recently been explored for the reaction on copper by controlling morphology(6), grain boundaries(7), facets(8), oxidation state(9) and dopants(10). Unfortunately, the Faradaic efficiency for ethylene is still low in neutral media (60 per cent at a partial current density of 7 milliamperes per square centimetre in the best catalyst reported so far(9)), resulting in a low energy efficiency. Here we present a molecular tuning strategy-the functionalization of the surface of electrocatalysts with organic molecules-that stabilizes intermediates for more selective CO2RR to ethylene. Using electrochemical, operando/in situ spectroscopic and computational studies, we investigate the influence of a library of molecules, derived by electro-dimerization of arylpyridiniums(11), adsorbed on copper. We find that the adhered molecules improve the stabilization of an '  atop-bound'  CO intermediate (that is, an intermediate bound to a single copper atom), thereby favouring further reduction to ethylene. As a result of this strategy, we report the CO2RR to ethylene with a Faradaic efficiency of 72 per cent at a partial current density of 230 milliamperes per square centimetre in a liquid-electrolyte flow cell in a neutral medium. We report stable ethylene electrosynthesis for 190 hours in a system based on a membrane-electrode assembly that provides a full-cell energy efficiency of 20 per cent. We anticipate that this may be generalized to enable molecular strategies to complement heterogeneous catalysts by stabilizing intermediates through local molecular tuning.


Electrocatalytic reduction of CO2 over copper can be made highly selective by '  tuning'  the copper surface with adsorbed organic molecules to stabilize intermediates for carbon-based fuels such as ethylene


  
Late Cretaceous neornithine from Europe illuminates the origins of crown birds 期刊论文
NATURE, 2020, 579 (7799) : 397-+
作者:  Shao, Zhengping;  Flynn, Ryan A.;  Crowe, Jennifer L.;  Zhu, Yimeng;  Liang, Jialiang;  Jiang, Wenxia;  Aryan, Fardin;  Aoude, Patrick;  Bertozzi, Carolyn R.;  Estes, Verna M.;  Lee, Brian J.;  Bhagat, Govind;  Zha, Shan;  Calo, Eliezer
收藏  |  浏览/下载:14/0  |  提交时间:2020/05/13

Our understanding of the earliest stages of crown bird evolution is hindered by an exceedingly sparse avian fossil record from the Mesozoic era. The most ancient phylogenetic divergences among crown birds are known to have occurred in the Cretaceous period(1-3), but stem-lineage representatives of the deepest subclades of crown birds-Palaeognathae (ostriches and kin), Galloanserae (landfowl and waterfowl) and Neoaves (all other extant birds)-are unknown from the Mesozoic era. As a result, key questions related to the ecology(4,5), biogeography(3,6,7) and divergence times(1,8-10) of ancestral crown birds remain unanswered. Here we report a new Mesozoic fossil that occupies a position close to the last common ancestor of Galloanserae and fills a key phylogenetic gap in the early evolutionary history of crown birds(10,11). Asteriornis maastrichtensis, gen. et sp. nov., from the Maastrichtian age of Belgium (66.8-66.7 million years ago), is represented by a nearly complete, three-dimensionally preserved skull and associated postcranial elements. The fossil represents one of the only well-supported crown birds from the Mesozoic era(12), and is the first Mesozoic crown bird with well-represented cranial remains. Asteriornis maastrichtensis exhibits a previously undocumented combination of galliform (landfowl)-like and anseriform (waterfowl)-like features, and its presence alongside a previously reported Ichthyornis-like taxon from the same locality(13) provides direct evidence of the co-occurrence of crown birds and avialan stem birds. Its occurrence in the Northern Hemisphere challenges biogeographical hypotheses of a Gondwanan origin of crown birds(3), and its relatively small size and possible littoral ecology may corroborate proposed ecological filters(4,5,9) that influenced the persistence of crown birds through the end-Cretaceous mass extinction.


A newly discovered fossil from the Cretaceous of Belgium is the oldest modern bird ever found, showing a unique combination of features and suggesting attributes shared by avian survivors of the end-Cretaceous extinction.


  
Hummingbird-sized dinosaur from the Cretaceous period of Myanmar 期刊论文
NATURE, 2020, 579 (7798) : 245-+
作者:  McBrien, Julia Bergild;  Mavigner, Maud;  Franchitti, Lavinia;  Smith, S. Abigail;  White, Erick;  Tharp, Gregory K.;  Walum, Hasse;  Busman-Sahay, Kathleen;  Aguilera-Sandoval, Christian R.;  Thayer, William O.;  Spagnuolo, Rae Ann;  Kovarova, Martina;  Wahl, Angela;  Cervasi, Barbara;  Margolis, David M.
收藏  |  浏览/下载:5/0  |  提交时间:2020/05/13

Skeletal inclusions in approximately 99-million-year-old amber from northern Myanmar provide unprecedented insights into the soft tissue and skeletal anatomy of minute fauna, which are not typically preserved in other depositional environments(1-3). Among a diversity of vertebrates, seven specimens that preserve the skeletal remains of enantiornithine birds have previously been described(1,4-8), all of which (including at least one seemingly mature specimen) are smaller than specimens recovered from lithic materials. Here we describe an exceptionally well-preserved and diminutive bird-like skull that documents a new species, which we name Oculudentavis khaungraae gen. et sp. nov. The find appears to represent the smallest known dinosaur of the Mesozoic era, rivalling the bee hummingbird (Mellisuga helenae)-the smallest living bird-in size. The O. khaungraae specimen preserves features that hint at miniaturization constraints, including a unique pattern of cranial fusion and an autapomorphic ocular morphology(9) that resembles the eyes of lizards. The conically arranged scleral ossicles define a small pupil, indicative of diurnal activity. Miniaturization most commonly arises in isolated environments, and the diminutive size of Oculudentavis is therefore consistent with previous suggestions that this amber formed on an island within the Trans-Tethyan arc(10). The size and morphology of this species suggest a previously unknown bauplan, and a previously undetected ecology. This discovery highlights the potential of amber deposits to reveal the lowest limits of vertebrate body size.


  
The dental proteome of Homo antecessor 期刊论文
NATURE, 2020, 580 (7802) : 235-+
作者:  Abram, Nerilie J.;  Wright, Nicky M.;  Ellis, Bethany;  Dixon, Bronwyn C.;  Wurtzel, Jennifer B.;  England, Matthew H.;  Ummenhofer, Caroline C.;  Philibosian, Belle;  Cahyarini, Sri Yudawati;  Yu, Tsai-Luen;  Shen, Chuan-Chou;  Cheng, Hai;  Edwards, R. Lawrence;  Heslop, David
收藏  |  浏览/下载:29/0  |  提交时间:2020/07/03

Analyses of the proteomes of dental enamel from Homo antecessor and Homo erectus demonstrate that the Early Pleistocene H. antecessor is a close sister lineage of later Homo sapiens, Neanderthal and Denisovan populations in Eurasia.


The phylogenetic relationships between hominins of the Early Pleistocene epoch in Eurasia, such as Homo antecessor, and hominins that appear later in the fossil record during the Middle Pleistocene epoch, such as Homo sapiens, are highly debated(1-5). For the oldest remains, the molecular study of these relationships is hindered by the degradation of ancient DNA. However, recent research has demonstrated that the analysis of ancient proteins can address this challenge(6-8). Here we present the dental enamel proteomes of H. antecessor from Atapuerca (Spain)(9,10) and Homo erectus from Dmanisi (Georgia)(1), two key fossil assemblages that have a central role in models of Pleistocene hominin morphology, dispersal and divergence. We provide evidence that H. antecessor is a close sister lineage to subsequent Middle and Late Pleistocene hominins, including modern humans, Neanderthals and Denisovans. This placement implies that the modern-like face of H. antecessor-that is, similar to that of modern humans-may have a considerably deep ancestry in the genus Homo, and that the cranial morphology of Neanderthals represents a derived form. By recovering AMELY-specific peptide sequences, we also conclude that the H. antecessor molar fragment from Atapuerca that we analysed belonged to a male individual. Finally, these H. antecessor and H. erectus fossils preserve evidence of enamel proteome phosphorylation and proteolytic digestion that occurred in vivo during tooth formation. Our results provide important insights into the evolutionary relationships between H. antecessor and other hominin groups, and pave the way for future studies using enamel proteomes to investigate hominin biology across the existence of the genus Homo.


  
Stiffness of the human foot and evolution of the transverse arch 期刊论文
NATURE, 2020
作者:  Fujioka, Yuko;  Alam, Jahangir Md.;  Noshiro, Daisuke;  Mouri, Kazunari;  Ando, Toshio;  Okada, Yasushi;  May, Alexander I.;  Knorr, Roland L.;  Suzuki, Kuninori;  Ohsumi, Yoshinori;  Noda, Nobuo N.
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

The transverse tarsal arch, acting through the inter-metatarsal tissues, is important for the longitudinal stiffness of the foot and its appearance is a key step in the evolution of human bipedalism.


The stiff human foot enables an efficient push-off when walking or running, and was critical for the evolution of bipedalism(1-6). The uniquely arched morphology of the human midfoot is thought to stiffen it(5-9), whereas other primates have flat feet that bend severely in the midfoot(7,10,11). However, the relationship between midfoot geometry and stiffness remains debated in foot biomechanics(12,13), podiatry(14,15) and palaeontology(4-6). These debates centre on the medial longitudinal arch(5,6) and have not considered whether stiffness is affected by the second, transverse tarsal arch of the human foot(16). Here we show that the transverse tarsal arch, acting through the inter-metatarsal tissues, is responsible for more than 40% of the longitudinal stiffness of the foot. The underlying principle resembles a floppy currency note that stiffens considerably when it curls transversally. We derive a dimensionless curvature parameter that governs the stiffness contribution of the transverse tarsal arch, demonstrate its predictive power using mechanical models of the foot and find its skeletal correlate in hominin feet. In the foot, the material properties of the inter-metatarsal tissues and the mobility of the metatarsals may additionally influence the longitudinal stiffness of the foot and thus the curvature-stiffness relationship of the transverse tarsal arch. By analysing fossils, we track the evolution of the curvature parameter among extinct hominins and show that a human-like transverse arch was a key step in the evolution of human bipedalism that predates the genus Homo by at least 1.5 million years. This renewed understanding of the foot may improve the clinical treatment of flatfoot disorders, the design of robotic feet and the study of foot function in locomotion.


  
Global-scale human impact on delta morphology has led to net land area gain 期刊论文
NATURE, 2020, 577 (7791) : 514-+
作者:  Nienhuis, J. H.;  Ashton, A. D.;  Edmonds, D. A.;  Hoitink, A. J. F.;  Kettner, A. J.;  Rowland, J. C.;  Tornqvist, T. E.
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13

River deltas rank among the most economically and ecologically valuable environments on Earth. Even in the absence of sea-level rise, deltas are increasingly vulnerable to coastal hazards as declining sediment supply and climate change alter their sediment budget, affecting delta morphology and possibly leading to erosion(1-3). However, the relationship between deltaic sediment budgets, oceanographic forces of waves and tides, and delta morphology has remained poorly quantified. Here we show how the morphology of about 11,000 coastal deltas worldwide, ranging from small bayhead deltas to mega-deltas, has been affected by river damming and deforestation. We introduce a model that shows that present-day delta morphology varies across a continuum between wave (about 80 per cent), tide (around 10 per cent) and river (about 10 per cent) dominance, but that most large deltas are tide- and river-dominated. Over the past 30 years, despite sea-level rise, deltas globally have experienced a net land gain of 54 +/- 12 square kilometres per year (2 standard deviations), with the largest 1 per cent of deltas being responsible for 30 per cent of all net land area gains. Humans are a considerable driver of these net land gains-25 per cent of delta growth can be attributed to deforestation-induced increases in fluvial sediment supply. Yet for nearly 1,000 deltas, river damming(4) has resulted in a severe (more than 50 per cent) reduction in anthropogenic sediment flux, forcing a collective loss of 12 +/- 3.5 square kilometres per year (2 standard deviations) of deltaic land. Not all deltas lose land in response to river damming: deltas transitioning towards tide dominance are currently gaining land, probably through channel infilling. With expected accelerated sea-level rise(5), however, recent land gains are unlikely to be sustained throughout the twenty-first century. Understanding the redistribution of sediments by waves and tides will be critical for successfully predicting human-driven change to deltas, both locally and globally.


A global study of river deltas shows a net increase in delta area by about 54 km(2) yr(-1) over the past 30 years, in part due to deforestation-induced sediment delivery increase.


  
Elemental signatures of Australopithecus africanus teeth reveal seasonal dietary stress 期刊论文
NATURE, 2019, 572 (7767) : 112-+
作者:  Joannes-Boyau, Renaud;  Adams, Justin W.;  Austin, Christine;  Arora, Manish;  Moffat, Ian;  Herries, Andy I. R.;  Tonge, Matthew P.;  Benazzi, Stefano;  Evans, Alistair R.;  Kullmer, Ottmar;  Wroe, Stephen;  Dosseto, Anthony;  Fiorenza, Luca
收藏  |  浏览/下载:6/0  |  提交时间:2019/11/27
Climatic control of Mississippi River flood hazard amplified by river engineering 期刊论文
NATURE, 2018, 556 (7699) : 95-+
作者:  Munoz, Samuel E.;  39;Donnell, Michelle
收藏  |  浏览/下载:4/0  |  提交时间:2019/11/27
Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk 期刊论文
NATURE, 2018, 555 (7696) : 334-+
作者:  Bergemann, Maria;  Sesar, Branimir;  Cohen, Judith G.;  Serenelli, Aldo M.;  Sheffield, Allyson;  Li, Ting S.;  Casagrande, Luca;  Johnston, Kathryn V.;  Laporte, Chervin F. P.;  Price-Whelan, Adrian M.;  Schonrich, Ralph;  Gould, Andrew
收藏  |  浏览/下载:4/0  |  提交时间:2019/11/27
New infant cranium from the African Miocene sheds light on ape evolution 期刊论文
NATURE, 2017, 548 (7666) : 169-+
作者:  Nengo, Isaiah;  Tafforeau, Paul;  Gilbert, Christopher C.;  Fleagle, John G.;  Miller, Ellen R.;  Feibel, Craig;  Fox, David L.;  Feinberg, Josh;  Pugh, Kelsey D.;  Berruyer, Camille;  Mana, Sara;  Engle, Zachary;  Spoor, Fred
收藏  |  浏览/下载:8/0  |  提交时间:2019/11/27