GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Ancient West African foragers in the context of African population history 期刊论文
NATURE, 2020, 577 (7792) : 665-+
作者:  Grunwald, Hannah A.;  Gantz, Valentino M.;  Poplawski, Gunnar;  Xu, Xiang-Ru S.;  Bier, Ethan;  Cooper, Kimberly L.
收藏  |  浏览/下载:22/0  |  提交时间:2020/07/03

Genome-wide ancestry profiles of four individuals, dating to 8,000 and 3,000 years before present, from the archaeological site of Shum Laka (Cameroon) shed light on the deep population history of sub-Saharan Africa.


Our knowledge of ancient human population structure in sub-Saharan Africa, particularly prior to the advent of food production, remains limited. Here we report genome-wide DNA data from four children-two of whom were buried approximately 8,000 years ago and two 3,000 years ago-from Shum Laka (Cameroon), one of the earliest known archaeological sites within the probable homeland of the Bantu language group(1-11). One individual carried the deeply divergent Y chromosome haplogroup A00, which today is found almost exclusively in the same region(12,13). However, the genome-wide ancestry profiles of all four individuals are most similar to those of present-day hunter-gatherers from western Central Africa, which implies that populations in western Cameroon today-as well as speakers of Bantu languages from across the continent-are not descended substantially from the population represented by these four people. We infer an Africa-wide phylogeny that features widespread admixture and three prominent radiations, including one that gave rise to at least four major lineages deep in the history of modern humans.


  
Feeding-dependent VIP neuron-ILC3 circuit regulates the intestinal barrier 期刊论文
NATURE, 2020, 579 (7800) : 575-+
作者:  Bhaduri, Aparna;  Andrews, Madeline G.;  Mancia Leon, Walter;  Jung, Diane;  Shin, David;  Allen, Denise;  Jung, Dana;  Schmunk, Galina;  Haeussler, Maximilian;  Salma, Jahan;  Pollen, Alex A.;  Nowakowski, Tomasz J.;  Kriegstein, Arnold R.
收藏  |  浏览/下载:37/0  |  提交时间:2020/07/03

The intestinal mucosa serves both as a conduit for the uptake of food-derived nutrients and microbiome-derived metabolites, and as a barrier that prevents tissue invasion by microorganisms and tempers inflammatory responses to the myriad contents of the lumen. How the intestine coordinates physiological and immune responses to food consumption to optimize nutrient uptake while maintaining barrier functions remains unclear. Here we show in mice how a gut neuronal signal triggered by food intake is integrated with intestinal antimicrobial and metabolic responses that are controlled by type-3 innate lymphoid cells (ILC3)(1-3). Food consumption rapidly activates a population of enteric neurons that express vasoactive intestinal peptide (VIP)(4). Projections of VIP-producing neurons (VIPergic neurons) in the lamina propria are in close proximity to clusters of ILC3 that selectively express VIP receptor type 2 (VIPR2  also known as VPAC2). Production of interleukin (IL)-22 by ILC3, which is upregulated by the presence of commensal microorganisms such as segmented filamentous bacteria(5-7), is inhibited upon engagement of VIPR2. As a consequence, levels of antimicrobial peptide derived from epithelial cells are reduced but the expression of lipid-binding proteins and transporters is increased(8). During food consumption, the activation of VIPergic neurons thus enhances the growth of segmented filamentous bacteria associated with the epithelium, and increases lipid absorption. Our results reveal a feeding- and circadian-regulated dynamic neuroimmune circuit in the intestine that promotes a trade-off between innate immune protection mediated by IL-22 and the efficiency of nutrient absorption. Modulation of this pathway may therefore be effective for enhancing resistance to enteropathogens(2,3,9) and for the treatment of metabolic diseases.


Feeding controls a neuroimmune circuit comprising VIP-producing neurons and type-3 innate lymphoid cells that helps to regulate the efficiency of nutrient uptake and IL-22-mediated immune protection in the intestine.


  
The genome of Chenopodium quinoa 期刊论文
NATURE, 2017, 542 (7641) : 307-+
作者:  Jarvis, David E.;  Ho, Yung Shwen;  Lightfoot, Damien J.;  Schmockel, Sandra M.;  Li, Bo;  Borm, Theo J. A.;  Ohyanagi, Hajime;  Mineta, Katsuhiko;  Michell, Craig T.;  Saber, Noha;  Kharbatia, Najeh M.;  Rupper, Ryan R.;  Sharp, Aaron R.;  Dally, Nadine;  Boughton, Berin A.;  Woo, Yong H.;  Gao, Ge;  Schijlen, Elio G. W. M.;  Guo, Xiujie;  Momin, Afaque A.;  Negrao, Sonia;  Al-Babili, Salim;  Gehring, Christoph;  Roessner, Ute;  Jung, Christian;  Murphy, Kevin;  Arold, Stefan T.;  Gojobori, Takashi;  van der Linden, C. Gerard;  van Loo, Eibertus N.;  Jellen, Eric N.;  Maughan, Peter J.;  Tester, Mark
收藏  |  浏览/下载:8/0  |  提交时间:2019/04/09