GSTDTAP

浏览/检索结果: 共6条,第1-6条 帮助

限定条件                        
已选(0)清除 条数/页:   排序方式:
Forty years of ice-core records of CO2 期刊论文
NATURE, 2020, 579 (7800) : 505-506
作者:  Witze, Alexandra;  Watkins, Jessica
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03
Molecular tuning of CO2-to-ethylene conversion 期刊论文
NATURE, 2020, 577 (7791) : 509-+
作者:  Li, Fengwang;  39;Brien, Colin P.
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

The electrocatalytic reduction of carbon dioxide, powered by renewable electricity, to produce valuable fuels and feedstocks provides a sustainable and carbon-neutral approach to the storage of energy produced by intermittent renewable sources(1). However, the highly selective generation of economically desirable products such as ethylene from the carbon dioxide reduction reaction (CO2RR) remains a challenge(2). Tuning the stabilities of intermediates to favour a desired reaction pathway can improve selectivity(3-5), and this has recently been explored for the reaction on copper by controlling morphology(6), grain boundaries(7), facets(8), oxidation state(9) and dopants(10). Unfortunately, the Faradaic efficiency for ethylene is still low in neutral media (60 per cent at a partial current density of 7 milliamperes per square centimetre in the best catalyst reported so far(9)), resulting in a low energy efficiency. Here we present a molecular tuning strategy-the functionalization of the surface of electrocatalysts with organic molecules-that stabilizes intermediates for more selective CO2RR to ethylene. Using electrochemical, operando/in situ spectroscopic and computational studies, we investigate the influence of a library of molecules, derived by electro-dimerization of arylpyridiniums(11), adsorbed on copper. We find that the adhered molecules improve the stabilization of an '  atop-bound'  CO intermediate (that is, an intermediate bound to a single copper atom), thereby favouring further reduction to ethylene. As a result of this strategy, we report the CO2RR to ethylene with a Faradaic efficiency of 72 per cent at a partial current density of 230 milliamperes per square centimetre in a liquid-electrolyte flow cell in a neutral medium. We report stable ethylene electrosynthesis for 190 hours in a system based on a membrane-electrode assembly that provides a full-cell energy efficiency of 20 per cent. We anticipate that this may be generalized to enable molecular strategies to complement heterogeneous catalysts by stabilizing intermediates through local molecular tuning.


Electrocatalytic reduction of CO2 over copper can be made highly selective by '  tuning'  the copper surface with adsorbed organic molecules to stabilize intermediates for carbon-based fuels such as ethylene


  
Accelerated discovery of CO2 electrocatalysts using active machine learning 期刊论文
NATURE, 2020, 581 (7807) : 178-+
作者:  Lan, Jun;  Ge, Jiwan;  Yu, Jinfang;  Shan, Sisi;  Zhou, Huan;  Fan, Shilong;  Zhang, Qi;  Shi, Xuanling;  Wang, Qisheng;  Zhang, Linqi;  Wang, Xinquan
收藏  |  浏览/下载:88/0  |  提交时间:2020/07/03

The rapid increase in global energy demand and the need to replace carbon dioxide (CO2)-emitting fossil fuels with renewable sources have driven interest in chemical storage of intermittent solar and wind energy(1,2). Particularly attractive is the electrochemical reduction of CO2 to chemical feedstocks, which uses both CO2 and renewable energy(3-8). Copper has been the predominant electrocatalyst for this reaction when aiming for more valuable multi-carbon products(9-16), and process improvements have been particularly notable when targeting ethylene. However, the energy efficiency and productivity (current density) achieved so far still fall below the values required to produce ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identified using density functional theory calculations in combination with active machine learning, that efficiently reduce CO2 to ethylene with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion efficiency of 55 +/- 2 per cent at 150 milliamperes per square centimetre. We perform computational studies that suggest that the Cu-Al alloys provide multiple sites and surface orientations with near-optimal CO binding for both efficient and selective CO2 reduction(17). Furthermore, in situ X-ray absorption measurements reveal that Cu and Al enable a favourable Cu coordination environment that enhances C-C dimerization. These findings illustrate the value of computation and machine learning in guiding the experimental exploration of multi-metallic systems that go beyond the limitations of conventional single-metal electrocatalysts.


  
Short-term tests validate long-term estimates of climate change 期刊论文
NATURE, 2020, 582 (7811) : 185-186
作者:  Tollefson, Jeff
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Climate sensitivity to atmospheric CO2 levels is likely to be high.


Six-hour weather forecasts have been used to validate estimates of climate change hundreds of years from now. Such tests have great potential - but only if our weather-forecasting and climate-prediction systems are unified.


  
Ocean acidification does not impair the behaviour of coral reef fishes 期刊论文
NATURE, 2020, 577 (7790) : 370-+
作者:  Clark, Timothy D.;  Raby, Graham D.;  Roche, Dominique G.;  Binning, Sandra A.;  Speers-Roesch, Ben;  Jutfelt, Fredrik;  Sundin, Josefin
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

The partial pressure of CO2 in the oceans has increased rapidly over the past century, driving ocean acidification and raising concern for the stability of marine ecosystems(1-3). Coral reef fishes are predicted to be especially susceptible to end-of-century ocean acidification on the basis of several high-profile papers(4,5) that have reported profound behavioural and sensory impairments-for example, complete attraction to the chemical cues of predators under conditions of ocean acidification. Here, we comprehensively and transparently show that-in contrast to previous studies-end-of-century ocean acidification levels have negligible effects on important behaviours of coral reef fishes, such as the avoidance of chemical cues from predators, fish activity levels and behavioural lateralization (left-right turning preference). Using data simulations, we additionally show that the large effect sizes and small within-group variances that have been reported in several previous studies are highly improbable. Together, our findings indicate that the reported effects of ocean acidification on the behaviour of coral reef fishes are not reproducible, suggesting that behavioural perturbations will not be a major consequence for coral reef fishes in high CO2 oceans.


  
Antarctic and global climate history viewed from ice cores 期刊论文
NATURE, 2018, 558 (7709) : 200-208
作者:  Brook, Edward J.;  Buizert, Christo
收藏  |  浏览/下载:7/0  |  提交时间:2019/11/27