GSTDTAP

浏览/检索结果: 共61条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
A remnant planetary core in the hot-Neptune desert 期刊论文
NATURE, 2020, 583 (7814) : 39-+
作者:  David J. Armstrong;  Thé;  o A. Lopez;  Vardan Adibekyan;  Richard A. Booth;  Edward M. Bryant;  Karen A. Collins;  Magali Deleuil;  Alexandre Emsenhuber;  Chelsea X. Huang;  George W. King;  Jorge Lillo-Box;  Jack J. Lissauer;  Elisabeth Matthews;  Olivier Mousis;  Louise D. Nielsen;  Hugh Osborn;  Jon Otegi;  Nuno C. Santos;  ;  rgio G. Sousa;  Keivan G. Stassun;  Dimitri Veras;  Carl Ziegler;  Jack S. Acton;  Jose M. Almenara;  David R. Anderson;  David Barrado;  Susana C. C. Barros;  Daniel Bayliss;  Claudia Belardi;  Francois Bouchy;  ;  sar Briceñ;  o;  Matteo Brogi;  David J. A. Brown;  Matthew R. Burleigh;  Sarah L. Casewell;  Alexander Chaushev;  David R. Ciardi;  Kevin I. Collins;  Knicole D. Coló;  n;  Benjamin F. Cooke;  Ian J. M. Crossfield;  Rodrigo F. Dí;  az;  Elisa Delgado Mena;  Olivier D. S. Demangeon;  Caroline Dorn;  Xavier Dumusque;  Philipp Eigmü;  ller;  Michael Fausnaugh;  Pedro Figueira;  Tianjun Gan;  Siddharth Gandhi;  Samuel Gill;  Erica J. Gonzales;  Michael R. Goad;  Maximilian N. Gü;  nther;  Ravit Helled;  Saeed Hojjatpanah;  Steve B. Howell;  James Jackman;  James S. Jenkins;  Jon M. Jenkins;  Eric L. N. Jensen;  Grant M. Kennedy;  David W. Latham;  Nicholas Law;  Monika Lendl;  Michael Lozovsky;  Andrew W. Mann;  Maximiliano Moyano;  James McCormac;  Farzana Meru;  Christoph Mordasini;  Ares Osborn;  Don Pollacco;  Didier Queloz;  Liam Raynard;  George R. Ricker;  Pamela Rowden;  Alexandre Santerne;  Joshua E. Schlieder;  Sara Seager;  Lizhou Sha;  Thiam-Guan Tan;  Rosanna H. Tilbrook;  Eric Ting;  Sté;  phane Udry;  Roland Vanderspek;  Christopher A. Watson;  Richard G. West;  Paul A. Wilson;  Joshua N. Winn;  Peter Wheatley;  Jesus Noel Villasenor;  Jose I. Vines;  Zhuchang Zhan
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/06

The interiors of giant planets remain poorly understood. Even for the planets in the Solar System, difficulties in observation lead to large uncertainties in the properties of planetary cores. Exoplanets that have undergone rare evolutionary processes provide a route to understanding planetary interiors. Planets found in and near the typically barren hot-Neptune '  desert'  (1,2)(a region in mass-radius space that contains few planets) have proved to be particularly valuable in this regard. These planets include HD149026b(3), which is thought to have an unusually massive core, and recent discoveries such as LTT9779b(4)and NGTS-4b(5), on which photoevaporation has removed a substantial part of their outer atmospheres. Here we report observations of the planet TOI-849b, which has a radius smaller than Neptune'  s but an anomalously large mass of39.1-2.6+2.7Earth masses and a density of5.2-0.8+0.7grams per cubic centimetre, similar to Earth'  s. Interior-structure models suggest that any gaseous envelope of pure hydrogen and helium consists of no more than3.9-0.9+0.8 per cent of the total planetary mass. The planet could have been a gas giant before undergoing extreme mass loss via thermal self-disruption or giant planet collisions, or it could have avoided substantial gas accretion, perhaps through gap opening or late formation(6). Although photoevaporation rates cannot account for the mass loss required to reduce a Jupiter-like gas giant, they can remove a small (a few Earth masses) hydrogen and helium envelope on timescales of several billion years, implying that any remaining atmosphere on TOI-849b is likely to be enriched by water or other volatiles from the planetary interior. We conclude that TOI-849b is the remnant core of a giant planet.


Observations of TOI-849b reveal a radius smaller than Neptune'  s but a large mass of about 40 Earth masses, indicating that the planet is the remnant core of a gas giant.


  
Strain engineering and epitaxial stabilization of halide perovskites 期刊论文
NATURE, 2020, 577 (7789) : 209-+
作者:  Chen, Yimu;  Lei, Yusheng;  Li, Yuheng;  Yu, Yugang;  Cai, Jinze;  Chiu, Ming-Hui;  Rao, Rahul;  Gu, Yue;  Wang, Chunfeng;  Choi, Woojin;  Hu, Hongjie;  Wang, Chonghe;  Li, Yang;  Song, Jiawei;  Zhang, Jingxin;  Qi, Baiyan;  Lin, Muyang;  Zhang, Zhuorui;  Islam, Ahmad E.;  Maruyama, Benji;  Dayeh, Shadi;  Li, Lain-Jong;  Yang, Kesong;  Lo, Yu-Hwa;  Xu, Sheng
收藏  |  浏览/下载:26/0  |  提交时间:2020/07/03

Strain engineering is a powerful tool with which to enhance semiconductor device performance(1,2). Halide perovskites have shown great promise in device applications owing to their remarkable electronic and optoelectronic properties(3-5). Although applying strain to halide perovskites has been frequently attempted, including using hydrostatic pressurization(6-8), electrostriction(9), annealing(10-12), van der Waals force(13), thermal expansion mismatch(14), and heat-induced substrate phase transition(15), the controllable and device-compatible strain engineering of halide perovskites by chemical epitaxy remains a challenge, owing to the absence of suitable lattice-mismatched epitaxial substrates. Here we report the strained epitaxial growth of halide perovskite single-crystal thin films on lattice-mismatched halide perovskite substrates. We investigated strain engineering of a-formamidinium lead iodide (alpha-FAPbI(3)) using both experimental techniques and theoretical calculations. By tailoring the substrate composition-and therefore its lattice parameter-a compressive strain as high as 2.4 per cent is applied to the epitaxial alpha-FAPbI(3) thin film. We demonstrate that this strain effectively changes the crystal structure, reduces the bandgap and increases the hole mobility of alpha-FAPbI(3). Strained epitaxy is also shown to have a substantial stabilization effect on the alpha-FAPbI(3) phase owing to the synergistic effects of epitaxial stabilization and strain neutralization. As an example, strain engineering is applied to enhance the performance of an alpha-FAPbI(3)-based photodetector.


  
Proton-assisted growth of ultra-flat graphene films 期刊论文
NATURE, 2020, 577 (7789) : 204-+
作者:  Yuan, Guowen;  Lin, Dongjing;  Wang, Yong;  Huang, Xianlei;  Chen, Wang;  Xie, Xuedong;  Zong, Junyu;  Yuan, Qian-Qian;  Zheng, Hang;  Wang, Di;  Xu, Jie;  Li, Shao-Chun;  Zhang, Yi;  Sun, Jian;  Xi, Xiaoxiang;  Gao, Libo
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Graphene films grown by chemical vapour deposition have unusual physical and chemical properties that offer promise for applications such as flexible electronics and high-frequency transistors(1-10). However, wrinkles invariably form during growth because of the strong coupling to the substrate, and these limit the large-scale homogeneity of the film(1-4,11,12). Here we develop a proton-assisted method of chemical vapour deposition to grow ultra-flat graphene films that are wrinkle-free. Our method of proton penetration(13-17) and recombination to form hydrogen can also reduce the wrinkles formed during traditional chemical vapour deposition of graphene. Some of the wrinkles disappear entirely, owing to the decoupling of van der Waals interactions and possibly an increase in distance from the growth surface. The electronic band structure of the as-grown graphene films shows a V-shaped Dirac cone and a linear dispersion relation within the atomic plane or across an atomic step, confirming the decoupling from the substrate. The ultra-flat nature of the graphene films ensures that their surfaces are easy to clean after a wet transfer process. A robust quantum Hall effect appears even at room temperature in a device with a linewidth of 100 micrometres. Graphene films grown by proton-assisted chemical vapour deposition should largely retain their intrinsic performance, and our method should be easily generalizable to other nanomaterials for strain and doping engineering.


  
Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition 期刊论文
NATURE, 2020, 577 (7790) : 421-+
作者:  Xue, Jenny Y.;  Zhao, Yulei;  Aronowitz, Jordan;  Mai, Trang T.;  Vides, Alberto;  Qeriqi, Besnik;  Kim, Dongsung;  Li, Chuanchuan;  de Stanchina, Elisa;  Mazutis, Linas;  Risso, Davide;  Lito, Piro
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

KRAS GTPases are activated in one-third of cancers, and KRAS(G12C) is one of the most common activating alterations in lung adenocarcinoma(1,2). KRAS(G12C) inhibitors(3,4) are in phase-I clinical trials and early data show partial responses in nearly half of patients with lung cancer. How cancer cells bypass inhibition to prevent maximal response to therapy is not understood. Because KRAS(G12C) cycles between an active and inactive conformation(4-6), and the inhibitors bind only to the latter, we tested whether isogenic cell populations respond in a non-uniform manner by studying the effect of treatment at a single-cell resolution. Here we report that, shortly after treatment, some cancer cells are sequestered in a quiescent state with low KRAS activity, whereas others bypass this effect to resume proliferation. This rapid divergent response occurs because some quiescent cells produce new KRAS(G12C) in response to suppressed mitogen-activated protein kinase output. New KRAS(G12C) is maintained in its active, drug-insensitive state by epidermal growth factor receptor and aurora kinase signalling. Cells without these adaptive changes-or cells in which these changes are pharmacologically inhibited-remain sensitive to drug treatment, because new KRAS(G12C) is either not available or exists in its inactive, drug-sensitive state. The direct targeting of KRAS oncoproteins has been a longstanding objective in precision oncology. Our study uncovers a flexible non-uniform fitness mechanism that enables groups of cells within a population to rapidly bypass the effect of treatment. This adaptive process must be overcome if we are to achieve complete and durable responses in the clinic.


  
Rapid growth of new atmospheric particles by nitric acid and ammonia condensation 期刊论文
NATURE, 2020, 581 (7807) : 184-+
作者:  Liang, Guanxiang;  Zhao, Chunyu;  Zhang, Huanjia;  Mattei, Lisa;  Sherrill-Mix, Scott;  Bittinger, Kyle;  Kessler, Lyanna R.;  Wu, Gary D.;  Baldassano, Robert N.;  DeRusso, Patricia;  Ford, Eileen;  Elovitz, Michal A.;  Kelly, Matthew S.;  Patel, Mohamed Z.;  Mazhani, Tiny;  Gerber, Jeffrey S.;  Kelly, Andrea;  Zemel, Babette S.;  Bushman, Frederic D.
收藏  |  浏览/下载:17/0  |  提交时间:2020/05/20

A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog(1,2), but how it occurs in cities is often puzzling(3). If the growth rates of urban particles are similar to those found in cleaner environments (1-10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below -15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid-base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms(4,5).


  
Metabolic heterogeneity confers differences in melanoma metastatic potential 期刊论文
NATURE, 2020, 577 (7788) : 115-+
作者:  Tasdogan, Alpaslan;  Faubert, Brandon;  Ramesh, Vijayashree;  Ubellacker, Jessalyn M.;  Shen, Bo;  Solmonson, Ashley;  Murphy, Malea M.;  Gu, Zhimin;  Gu, Wen;  Martin, Misty;  Kasitinon, Stacy Y.;  Vandergriff, Travis;  Mathews, Thomas P.;  Zhao, Zhiyu;  Schadendorf, Dirk;  DeBerardinis, Ralph J.;  Morrison, Sean J.
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Metastasis requires cancer cells to undergo metabolic changes that are poorly understood(1-3). Here we show that metabolic differences among melanoma cells confer differences in metastatic potential as a result of differences in the function of the MCT1 transporter. In vivo isotope tracing analysis in patient-derived xenografts revealed differences in nutrient handling between efficiently and inefficiently metastasizing melanomas, with circulating lactate being a more prominent source of tumour lactate in efficient metastasizers. Efficient metastasizers had higher levels of MCT1, and inhibition of MCT1 reduced lactate uptake. MCT1 inhibition had little effect on the growth of primary subcutaneous tumours, but resulted in depletion of circulating melanoma cells and reduced the metastatic disease burden in patient-derived xenografts and in mouse melanomas. In addition, inhibition of MCT1 suppressed the oxidative pentose phosphate pathway and increased levels of reactive oxygen species. Antioxidants blocked the effects of MCT1 inhibition on metastasis. MCT1(high) and MCT1(-/low) cells from the same melanomas had similar capacities to form subcutaneous tumours, but MCT1(high) cells formed more metastases after intravenous injection. Metabolic differences among cancer cells thus confer differences in metastatic potential as metastasizing cells depend on MCT1 to manage oxidative stress.


  
Confinement of atomically defined metal halide sheets in a metal-organic framework 期刊论文
NATURE, 2020, 577 (7788) : 64-+
作者:  Gonzalez, Miguel I.;  Turkiewicz, Ari B.;  Darago, Lucy E.;  Oktawiec, Julia;  Bustillo, Karen;  Grandjean, Fernande;  Long, Gary J.;  Long, Jeffrey R.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

The size-dependent and shape-dependent characteristics that distinguish nanoscale materials from bulk solids arise from constraining the dimensionality of an inorganic structure(1-3). As a consequence, many studies have focused on rationally shaping these materials to influence and enhance their optical, electronic, magnetic and catalytic properties(4-6). Although a select number of stable clusters can typically be synthesized within the nanoscale regime for a specific composition, isolating clusters of a predetermined size and shape remains a challenge, especially for those derived from two-dimensional materials. Here we realize a multidentate coordination environment in a metal-organic framework to stabilize discrete inorganic clusters within a porous crystalline support. We show confined growth of atomically defined nickel(ii) bromide, nickel(ii) chloride, cobalt(ii) chloride and iron(ii) chloride sheets through the peripheral coordination of six chelating bipyridine linkers. Notably, confinement within the framework defines the structure and composition of these sheets and facilitates their precise characterization by crystallography. Each metal(ii) halide sheet represents a fragment excised from a single layer of the bulk solid structure, and structures obtained at different precursor loadings enable observation of successive stages of sheet assembly. Finally, the isolated sheets exhibit magnetic behaviours distinct from those of the bulk metal halides, including the isolation of ferromagnetically coupled large-spin ground states through the elimination of long-range, interlayer magnetic ordering. Overall, these results demonstrate that the pore environment of a metal-organic framework can be designed to afford precise control over the size, structure and spatial arrangement of inorganic clusters.


  
RGF1 controls root meristem size through ROS signalling 期刊论文
NATURE, 2020, 577 (7788) : 85-+
作者:  Yamada, Masashi;  Han, Xinwei;  Benfey, Philip N.
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

The stem cell niche and the size of the root meristem in plants are maintained by intercellular interactions and signalling networks involving a peptide hormone, root meristem growth factor 1 (RGF1)(1). Understanding how RGF1 regulates the development of the root meristem is essential for understanding stem cell function. Although five receptors for RGF1 have been identified(2-4), the downstream signalling mechanism remains unknown. Here we report a series of signalling events that follow RGF1 activity. We find that the RGF1-receptor pathway controls the distribution of reactive oxygen species (ROS) along the developmental zones of the Arabidopsis root. We identify a previously uncharacterized transcription factor, RGF1-INDUCIBLE TRANSCRIPTION FACTOR 1 (RITF1), that has a central role in mediating RGF1 signalling. Manipulating RITF1 expression leads to the redistribution of ROS along the root developmental zones. Changes in ROS distribution in turn enhance the stability of the PLETHORA2 protein, a master regulator of root stem cells. Our results thus clearly depict a signalling cascade that is initiated by RGF1, linking this peptide to mechanisms that regulate ROS.


  
Population flow drives spatio-temporal distribution of COVID-19 in China 期刊论文
NATURE, 2020
作者:  Fernandez, Diego Carlos;  Komal, Ruchi;  Langel, Jennifer;  Ma, Jun;  Duy, Phan Q.;  Penzo, Mario A.;  Zhao, Haiqing;  Hattar, Samer
收藏  |  浏览/下载:69/0  |  提交时间:2020/07/03

Sudden, large-scale and diffuse human migration can amplify localized outbreaks of disease into widespread epidemics(1-4). Rapid and accurate tracking of aggregate population flows may therefore be epidemiologically informative. Here we use 11,478,484 counts of mobile phone data from individuals leaving or transiting through the prefecture of Wuhan between 1 January and 24 January 2020 as they moved to 296 prefectures throughout mainland China. First, we document the efficacy of quarantine in ceasing movement. Second, we show that the distribution of population outflow from Wuhan accurately predicts the relative frequency and geographical distribution of infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) until 19 February 2020, across mainland China. Third, we develop a spatio-temporal '  risk source'  model that leverages population flow data (which operationalize the risk that emanates from epidemic epicentres) not only to forecast the distribution of confirmed cases, but also to identify regions that have a high risk of transmission at an early stage. Fourth, we use this risk source model to statistically derive the geographical spread of COVID-19 and the growth pattern based on the population outflow from Wuhan  the model yields a benchmark trend and an index for assessing the risk of community transmission of COVID-19 over time for different locations. This approach can be used by policy-makers in any nation with available data to make rapid and accurate risk assessments and to plan the allocation of limited resources ahead of ongoing outbreaks.


Modelling of population flows in China enables the forecasting of the distribution of confirmed cases of COVID-19 and the identification of areas at high risk of SARS-CoV-2 transmission at an early stage.


  
Engineering covalently bonded 2D layered materials by self-intercalation 期刊论文
NATURE, 2020, 581 (7807) : 171-+
作者:  Shang, Jian;  Ye, Gang;  Shi, Ke;  Wan, Yushun;  Luo, Chuming;  Aihara, Hideki;  Geng, Qibin;  Auerbach, Ashley;  Li, Fang
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Two-dimensional (2D) materials(1-5) offer a unique platform from which to explore the physics of topology and many-body phenomena. New properties can be generated by filling the van der Waals gap of 2D materials with intercalants(6,7)  however, post-growth intercalation has usually been limited to alkali metals(8-10). Here we show that the self-intercalation of native atoms(11,12) into bilayer transition metal dichalcogenides during growth generates a class of ultrathin, covalently bonded materials, which we name ic-2D. The stoichiometry of these materials is defined by periodic occupancy patterns of the octahedral vacancy sites in the van der Waals gap, and their properties can be tuned by varying the coverage and the spatial arrangement of the filled sites(7,13). By performing growth under high metal chemical potential(14,15) we can access a range of tantalum-intercalated TaS(Se)(y), including 25% Ta-intercalated Ta9S16, 33.3% Ta-intercalated Ta7S12, 50% Ta-intercalated Ta10S16, 66.7% Ta-intercalated Ta8Se12 (which forms a Kagome lattice) and 100% Ta-intercalated Ta9Se12. Ferromagnetic order was detected in some of these intercalated phases. We also demonstrate that self-intercalated V11S16, In11Se16 and FexTey can be grown under metal-rich conditions. Our work establishes self-intercalation as an approach through which to grow a new class of 2D materials with stoichiometry- or composition-dependent properties.