GSTDTAP

浏览/检索结果: 共9条,第1-9条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Molecular tuning of CO2-to-ethylene conversion 期刊论文
NATURE, 2020, 577 (7791) : 509-+
作者:  Li, Fengwang;  39;Brien, Colin P.
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

The electrocatalytic reduction of carbon dioxide, powered by renewable electricity, to produce valuable fuels and feedstocks provides a sustainable and carbon-neutral approach to the storage of energy produced by intermittent renewable sources(1). However, the highly selective generation of economically desirable products such as ethylene from the carbon dioxide reduction reaction (CO2RR) remains a challenge(2). Tuning the stabilities of intermediates to favour a desired reaction pathway can improve selectivity(3-5), and this has recently been explored for the reaction on copper by controlling morphology(6), grain boundaries(7), facets(8), oxidation state(9) and dopants(10). Unfortunately, the Faradaic efficiency for ethylene is still low in neutral media (60 per cent at a partial current density of 7 milliamperes per square centimetre in the best catalyst reported so far(9)), resulting in a low energy efficiency. Here we present a molecular tuning strategy-the functionalization of the surface of electrocatalysts with organic molecules-that stabilizes intermediates for more selective CO2RR to ethylene. Using electrochemical, operando/in situ spectroscopic and computational studies, we investigate the influence of a library of molecules, derived by electro-dimerization of arylpyridiniums(11), adsorbed on copper. We find that the adhered molecules improve the stabilization of an '  atop-bound'  CO intermediate (that is, an intermediate bound to a single copper atom), thereby favouring further reduction to ethylene. As a result of this strategy, we report the CO2RR to ethylene with a Faradaic efficiency of 72 per cent at a partial current density of 230 milliamperes per square centimetre in a liquid-electrolyte flow cell in a neutral medium. We report stable ethylene electrosynthesis for 190 hours in a system based on a membrane-electrode assembly that provides a full-cell energy efficiency of 20 per cent. We anticipate that this may be generalized to enable molecular strategies to complement heterogeneous catalysts by stabilizing intermediates through local molecular tuning.


Electrocatalytic reduction of CO2 over copper can be made highly selective by '  tuning'  the copper surface with adsorbed organic molecules to stabilize intermediates for carbon-based fuels such as ethylene


  
Accelerated discovery of CO2 electrocatalysts using active machine learning 期刊论文
NATURE, 2020, 581 (7807) : 178-+
作者:  Lan, Jun;  Ge, Jiwan;  Yu, Jinfang;  Shan, Sisi;  Zhou, Huan;  Fan, Shilong;  Zhang, Qi;  Shi, Xuanling;  Wang, Qisheng;  Zhang, Linqi;  Wang, Xinquan
收藏  |  浏览/下载:89/0  |  提交时间:2020/07/03

The rapid increase in global energy demand and the need to replace carbon dioxide (CO2)-emitting fossil fuels with renewable sources have driven interest in chemical storage of intermittent solar and wind energy(1,2). Particularly attractive is the electrochemical reduction of CO2 to chemical feedstocks, which uses both CO2 and renewable energy(3-8). Copper has been the predominant electrocatalyst for this reaction when aiming for more valuable multi-carbon products(9-16), and process improvements have been particularly notable when targeting ethylene. However, the energy efficiency and productivity (current density) achieved so far still fall below the values required to produce ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identified using density functional theory calculations in combination with active machine learning, that efficiently reduce CO2 to ethylene with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion efficiency of 55 +/- 2 per cent at 150 milliamperes per square centimetre. We perform computational studies that suggest that the Cu-Al alloys provide multiple sites and surface orientations with near-optimal CO binding for both efficient and selective CO2 reduction(17). Furthermore, in situ X-ray absorption measurements reveal that Cu and Al enable a favourable Cu coordination environment that enhances C-C dimerization. These findings illustrate the value of computation and machine learning in guiding the experimental exploration of multi-metallic systems that go beyond the limitations of conventional single-metal electrocatalysts.


  
Synthesis of rare sugar isomers through site-selective epimerization 期刊论文
NATURE, 2020: 403-+
作者:  Jackson, Hartland W.;  Fischer, Jana R.;  Zanotelli, Vito R. T.;  Ali, H. Raza;  Mechera, Robert;  Soysal, Savas D.;  Moch, Holger;  Muenst, Simone;  Varga, Zsuzsanna;  Weber, Walter P.;  Bodenmiller, Bernd
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

Glycans have diverse physiological functions, ranging from energy storage and structural integrity to cell signalling and the regulation of intracellular processes(1). Although biomass-derived carbohydrates (such as d-glucose, d-xylose and d-galactose) are extracted on commercial scales, and serve as renewable chemical feedstocks and building blocks(2,3), there are hundreds of distinct monosaccharides that typically cannot be isolated from their natural sources and must instead be prepared through multistep chemical or enzymatic syntheses(4,5). These '  rare'  sugars feature prominently in bioactive natural products and pharmaceuticals, including antiviral, antibacterial, anticancer and cardiac drugs(6,7). Here we report the preparation of rare sugar isomers directly from biomass carbohydrates through site-selective epimerization reactions. Mechanistic studies establish that these reactions proceed under kinetic control, through sequential steps of hydrogen-atom abstraction and hydrogen-atom donation mediated by two distinct catalysts. This synthetic strategy provides concise and potentially extensive access to this valuable class of natural compounds.


Various rare sugars that cannot be isolated from natural sources are synthesized using light-driven epimerization, a process which may find application in other synthetic scenarios.


  
What would it take for renewably powered electrosynthesis to displace petrochemical processes? 期刊论文
SCIENCE, 2019, 364 (6438) : 350-+
作者:  De Luna, Phil;  Hahn, Christopher;  Higgins, Drew;  Jaffer, Shaffiq A.;  Jaramillo, Thomas F.;  Sargent, Edward H.
收藏  |  浏览/下载:8/0  |  提交时间:2019/11/27
Is wood pellet-based electricity less carbon-intensive than coal-based electricity? It depends on perspectives, baselines, feedstocks, and forest management practices 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (2)
作者:  Dwivedi, P.;  Khanna, M.;  Fuller, Madisen
收藏  |  浏览/下载:6/0  |  提交时间:2019/04/09
carbon intensity  wood pellets  forest management  climate change  environmental policy  
Strategies for near-term scale-up of cellulosic biofuel production using sorghum and crop residues in the US 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (12)
作者:  Cui, Xinguang;  Kavvada, Olga;  Huntington, Tyler;  Scown, Corinne D.
收藏  |  浏览/下载:5/0  |  提交时间:2019/04/09
bioenergy  biomass  sorghum  geospatial  
The promise of plastics from plants Plant-derived feedstocks are increasingly competitive in plastics production 期刊论文
SCIENCE, 2017, 358 (6365) : 868-870
作者:  Hillmyer, Marc A.
收藏  |  浏览/下载:4/0  |  提交时间:2019/11/27
Water quality effects of short-rotation pine management for bioenergy feedstocks in the southeastern United States 期刊论文
FOREST ECOLOGY AND MANAGEMENT, 2017, 400
作者:  Griffiths, Natalie A.;  Jackson, C. Rhett;  Bitew, Menberu M.;  Fortner, Allison M.;  Fouts, Kevin L.;  McCracken, Kitty;  Phillips, Jana R.
收藏  |  浏览/下载:8/0  |  提交时间:2019/04/09
Intensive silviculture  Short-rotation woody crops  Nitrogen  Concentrated flow tracks  Interflow  Surface water  
Greenhouse gas mitigation for US plastics production: energy first, feedstocks later 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2017, 12 (3)
作者:  Posen, I. Daniel;  Jaramillo, Paulina;  Landis, Amy E.;  Griffin, W. Michael
收藏  |  浏览/下载:12/0  |  提交时间:2019/04/09
bio-based plastics  renewable energy  renewable feedstocks  greenhouse gas mitigation  life cycle assessment