GSTDTAP

浏览/检索结果: 共95条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Estimation of global coastal sea level extremes using neural networks 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (7)
作者:  Bruneau, Nicolas;  Polton, Jeff;  Williams, Joanne;  Holt, Jason
收藏  |  浏览/下载:9/0  |  提交时间:2020/08/18
sea water anomaly  extremes  storm surges  GESLA database  machine learning  
Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (6)
作者:  Kang, Yanghui;  Ozdogan, Mutlu;  Zhu, Xiaojin;  Ye, Zhiwei;  Hain, Christopher;  Anderson, Martha
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/02
crop yields  climate impact  machine learning  deep learning  data-driven  
A map of object space in primate inferotemporal cortex 期刊论文
NATURE, 2020, 583 (7814) : 103-+
作者:  Wu, Huihui;  Li, Bosheng;  Iwakawa, Hiro-oki;  Pan, Yajie;  Tang, Xianli;  Ling-hu, Qianyan;  Liu, Yuelin;  Sheng, Shixin;  Feng, Li;  Zhang, Hong;  Zhang, Xinyan;  Tang, Zhonghua;  Xia, Xinli;  Zhai, Jixian;  Guo, Hongwei
收藏  |  浏览/下载:47/0  |  提交时间:2020/07/03

Primate inferotemporal cortex contains a coarse map of object space consisting of four networks, identified using functional imaging, electrophysiology and deep networks.


The inferotemporal (IT) cortex is responsible for object recognition, but it is unclear how the representation of visual objects is organized in this part of the brain. Areas that are selective for categories such as faces, bodies, and scenes have been found(1-5), but large parts of IT cortex lack any known specialization, raising the question of what general principle governs IT organization. Here we used functional MRI, microstimulation, electrophysiology, and deep networks to investigate the organization of macaque IT cortex. We built a low-dimensional object space to describe general objects using a feedforward deep neural network trained on object classification(6). Responses of IT cells to a large set of objects revealed that single IT cells project incoming objects onto specific axes of this space. Anatomically, cells were clustered into four networks according to the first two components of their preferred axes, forming a map of object space. This map was repeated across three hierarchical stages of increasing view invariance, and cells that comprised these maps collectively harboured sufficient coding capacity to approximately reconstruct objects. These results provide a unified picture of IT organization in which category-selective regions are part of a coarse map of object space whose dimensions can be extracted from a deep network.


  
Hidden neural states underlie canary song syntax 期刊论文
NATURE, 2020
作者:  Bao, Han;  Duan, Junlei;  Jin, Shenchao;  Lu, Xingda;  Li, Pengxiong;  Qu, Weizhi;  Wang, Mingfeng;  Novikova, Irina;  Mikhailov, Eugeniy E.;  Zhao, Kai-Feng;  Molmer, Klaus;  Shen, Heng;  Xiao, Yanhong
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Neurons in the canary premotor cortex homologue encode past song phrases and transitions, carrying information relevant to future choice of phrases as '  hidden states'  during song.


Coordinated skills such as speech or dance involve sequences of actions that follow syntactic rules in which transitions between elements depend on the identities and order of past actions. Canary songs consist of repeated syllables called phrases, and the ordering of these phrases follows long-range rules(1)in which the choice of what to sing depends on the song structure many seconds prior. The neural substrates that support these long-range correlations are unknown. Here, using miniature head-mounted microscopes and cell-type-specific genetic tools, we observed neural activity in the premotor nucleus HVC(2-4)as canaries explored various phrase sequences in their repertoire. We identified neurons that encode past transitions, extending over four phrases and spanning up to four seconds and forty syllables. These neurons preferentially encode past actions rather than future actions, can reflect more than one song history, and are active mostly during the rare phrases that involve history-dependent transitions in song. These findings demonstrate that the dynamics of HVC include '  hidden states'  that are not reflected in ongoing behaviour but rather carry information about prior actions. These states provide a possible substrate for the control of syntax transitions governed by long-range rules.


  
Deep Learning Emulation of Subgrid-Scale Processes in Turbulent Shear Flows 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (12)
作者:  Pal, Anikesh
收藏  |  浏览/下载:6/0  |  提交时间:2020/05/13
deep learning  turbulence  shear layers  
Probabilistic Forecasting of El Nino Using Neural Network Models 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (6)
作者:  Petersik, Paul Johannes;  Dijkstra, Henk A.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/02
El Nino  prediction  machine learning  neural networks  probabilistic forecasting  
Ground-Based Cloud Classification Using Task-Based Graph Convolutional Network 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (5)
作者:  Liu, Shuang;  Li, Mei;  Zhang, Zhong;  Cao, Xiaozhong;  Durrani, Tariq S.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/02
Rapid Characterization of the July 2019 Ridgecrest, California, Earthquake Sequence From Raw Seismic Data Using Machine-Learning Phase Picker 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (4)
作者:  Liu, Min;  Zhang, Miao;  Zhu, Weiqiang;  Ellsworth, William L.;  Li, Hongyi
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/02
Probing Slow Earthquakes With Deep Learning 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (4)
作者:  Rouet-Leduc, Bertrand;  Hulbert, Claudia;  McBrearty, Ian M.;  Johnson, Paul A.
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/02
Neuronal programming by microbiota regulates intestinal physiology 期刊论文
NATURE, 2020, 578 (7794) : 284-+
作者:  Li, Yilong;  Roberts, Nicola D.;  Wala, Jeremiah A.;  Shapira, Ofer;  Schumacher, Steven E.;  Kumar, Kiran;  Khurana, Ekta;  Waszak, Sebastian;  Korbel, Jan O.;  Haber, James E.;  Imielinski, Marcin;  Weischenfeldt, Joachim;  Beroukhim, Rameen;  Campbell, Peter J.;  Akdemir, Kadir C.;  Alvarez, Eva G.;  Baez-Ortega, Adrian;  Boutros, Paul C.;  Bowtell, David D. L.;  Brors, Benedikt;  Burns, Kathleen H.;  Chan, Kin;  Chen, Ken;  Cortes-Ciriano, Isidro;  Dueso-Barroso, Ana;  Dunford, Andrew J.;  Edwards, Paul A.;  Estivill, Xavier;  Etemadmoghadam, Dariush;  Feuerbach, Lars;  Fink, J. Lynn;  Frenkel-Morgenstern, Milana;  Garsed, Dale W.;  Gerstein, Mark;  Gordenin, Dmitry A.;  Haan, David;  Hess, Julian M.;  Hutter, Barbara;  Jones, David T. W.;  Ju, Young Seok;  Kazanov, Marat D.;  Klimczak, Leszek J.;  Koh, Youngil;  Lee, Eunjung Alice;  Lee, Jake June-Koo;  Lynch, Andy G.;  Macintyre, Geoff;  Markowetz, Florian;  Martincorena, Inigo;  Martinez-Fundichely, Alexander;  Meyerson, Matthew;  Miyano, Satoru;  Nakagawa, Hidewaki;  Navarro, Fabio C. P.;  Ossowski, Stephan;  Park, Peter J.;  Pearson, John, V;  Puiggros, Montserrat;  Rippe, Karsten;  Roberts, Steven A.;  Rodriguez-Martin, Bernardo;  Scully, Ralph;  Shackleton, Mark;  Sidiropoulos, Nikos;  Sieverling, Lina;  Stewart, Chip;  Torrents, David;  Tubio, Jose M. C.;  Villasante, Izar;  Waddell, Nicola;  Yang, Lixing;  Yao, Xiaotong;  Yoon, Sung-Soo;  Zamora, Jorge;  Zhang, Cheng-Zhong
收藏  |  浏览/下载:40/0  |  提交时间:2020/07/03

Neural control of the function of visceral organs is essential for homeostasis and health. Intestinal peristalsis is critical for digestive physiology and host defence, and is often dysregulated in gastrointestinal disorders(1). Luminal factors, such as diet and microbiota, regulate neurogenic programs of gut motility(2-5), but the underlying molecular mechanisms remain unclear. Here we show that the transcription factor aryl hydrocarbon receptor (AHR) functions as a biosensor in intestinal neural circuits, linking their functional output to the microbial environment of the gut lumen. Using nuclear RNA sequencing of mouse enteric neurons that represent distinct intestinal segments and microbiota states, we demonstrate that the intrinsic neural networks of the colon exhibit unique transcriptional profiles that are controlled by the combined effects of host genetic programs and microbial colonization. Microbiota-induced expression of AHR in neurons of the distal gastrointestinal tract enables these neurons to respond to the luminal environment and to induce expression of neuron-specific effector mechanisms. Neuron-specific deletion of Ahr, or constitutive overexpression of its negative feedback regulator CYP1A1, results in reduced peristaltic activity of the colon, similar to that observed in microbiota-depleted mice. Finally, expression of Ahr in the enteric neurons of mice treated with antibiotics partially restores intestinal motility. Together, our experiments identify AHR signalling in enteric neurons as a regulatory node that integrates the luminal environment with the physiological output of intestinal neural circuits to maintain gut homeostasis and health.


In a mouse model, aryl hydrocarbon receptor signalling in enteric neurons is revealed as a mechanism that helps to maintain gut homeostasis by integrating the luminal environment with the physiology of intestinal neural circuits.