GSTDTAP

浏览/检索结果: 共128条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Reduced ecosystem services of desert plants from ground-mounted solar energy development 期刊论文
NATURE SUSTAINABILITY, 2020
作者:  Grodsky, Steven M.;  Hernandez, Rebecca R.
收藏  |  浏览/下载:15/0  |  提交时间:2020/08/09
Trading off visual disamenity for renewable energy: Willingness to pay for seaweed farming for energy production 期刊论文
ECOLOGICAL ECONOMICS, 2020, 173
作者:  Demel, Simona;  Longo, Alberto;  Mariel, Petr
收藏  |  浏览/下载:10/0  |  提交时间:2020/08/18
Choice experiment  Random parameter logit  Seaweed  Biogas  Coastline  Visual disamenity  
Global reduction of solar power generation efficiency due to aerosols and panel soiling 期刊论文
NATURE SUSTAINABILITY, 2020
作者:  Li, Xiaoyuan;  Mauzerall, Denise L.;  Bergin, Mike H.
收藏  |  浏览/下载:8/0  |  提交时间:2020/06/29
Smart renewable electricity portfolios in West Africa 期刊论文
NATURE SUSTAINABILITY, 2020
作者:  Sterl, Sebastian;  Vanderkelen, Inne;  Chawanda, Celray James;  Russo, Daniel;  Brecha, Robert J.;  van Griensven, Ann;  van Lipzig, Nicole P. M.;  Thiery, Wim
收藏  |  浏览/下载:11/0  |  提交时间:2020/06/01
Rapid cost decrease of renewables and storage accelerates the decarbonization of China's power system 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  He, Gang;  Lin, Jiang;  Sifuentes, Froylan;  Liu, Xu;  Abhyankar, Nikit;  Phadke, Amol
收藏  |  浏览/下载:11/0  |  提交时间:2020/05/20
Photovoltaic panel cooling by atmospheric water sorption-evaporation cycle 期刊论文
NATURE SUSTAINABILITY, 2020
作者:  Li, Renyuan;  Shi, Yusuf;  Wu, Mengchun;  Hong, Seunghyun;  Wang, Peng
收藏  |  浏览/下载:16/0  |  提交时间:2020/05/13
Accelerated discovery of CO2 electrocatalysts using active machine learning 期刊论文
NATURE, 2020, 581 (7807) : 178-+
作者:  Lan, Jun;  Ge, Jiwan;  Yu, Jinfang;  Shan, Sisi;  Zhou, Huan;  Fan, Shilong;  Zhang, Qi;  Shi, Xuanling;  Wang, Qisheng;  Zhang, Linqi;  Wang, Xinquan
收藏  |  浏览/下载:90/0  |  提交时间:2020/07/03

The rapid increase in global energy demand and the need to replace carbon dioxide (CO2)-emitting fossil fuels with renewable sources have driven interest in chemical storage of intermittent solar and wind energy(1,2). Particularly attractive is the electrochemical reduction of CO2 to chemical feedstocks, which uses both CO2 and renewable energy(3-8). Copper has been the predominant electrocatalyst for this reaction when aiming for more valuable multi-carbon products(9-16), and process improvements have been particularly notable when targeting ethylene. However, the energy efficiency and productivity (current density) achieved so far still fall below the values required to produce ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identified using density functional theory calculations in combination with active machine learning, that efficiently reduce CO2 to ethylene with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion efficiency of 55 +/- 2 per cent at 150 milliamperes per square centimetre. We perform computational studies that suggest that the Cu-Al alloys provide multiple sites and surface orientations with near-optimal CO binding for both efficient and selective CO2 reduction(17). Furthermore, in situ X-ray absorption measurements reveal that Cu and Al enable a favourable Cu coordination environment that enhances C-C dimerization. These findings illustrate the value of computation and machine learning in guiding the experimental exploration of multi-metallic systems that go beyond the limitations of conventional single-metal electrocatalysts.


  
The power of green defaults: the impact of regional variation of opt-out tariffs on green energy demand in Germany 期刊论文
ECOLOGICAL ECONOMICS, 2020, 174
作者:  Kaiser, Micha;  Bernauer, Manuela;  Sunstein, Cass R.;  Reisch, Lucia A.
收藏  |  浏览/下载:13/0  |  提交时间:2020/05/13
Defaults  Renewable energy  Opt-out tariffs  Green energy demand  Climate change policy  
Hydropower Production Benefits More From 1.5 degrees C than 2 degrees C Climate Scenario 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (5)
作者:  Meng, Ying;  Liu, Junguo;  Leduc, Sylvain;  Mesfun, Sennai;  Kraxner, Florian;  Mao, Ganquan;  Qi, Wei;  Wang, Zifeng
收藏  |  浏览/下载:11/0  |  提交时间:2020/05/13
global warming  hydropower(sic)hydro-economic modeling  optimization model  ISIMIP  PCR-GLOBWB  protected areas  
Iron-based binary ferromagnets for transverse thermoelectric conversion 期刊论文
NATURE, 2020, 581 (7806) : 53-+
作者:  Grun, Rainer;  Pike, Alistair;  McDermott, Frank;  Eggins, Stephen;  Mortimer, Graham;  Aubert, Maxime;  Kinsley, Lesley;  Joannes-Boyau, Renaud;  Rumsey, Michael;  Denys, Christiane;  Brink, James;  Clark, Tara;  Stringer, Chris
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Aluminium- and gallium-doped iron compounds show a large anomalous Nernst effect owing to a topological electronic structure, and their films are potentially suitable for designing low-cost, flexible microelectronic thermoelectric generators.


Thermoelectric generation using the anomalous Nernst effect (ANE) has great potential for application in energy harvesting technology because the transverse geometry of the Nernst effect should enable efficient, large-area and flexible coverage of a heat source. For such applications to be viable, substantial improvements will be necessary not only for their performance but also for the associated material costs, safety and stability. In terms of the electronic structure, the anomalous Nernst effect (ANE) originates from the Berry curvature of the conduction electrons near the Fermi energy(1,2). To design a large Berry curvature, several approaches have been considered using nodal points and lines in momentum space(3-10). Here we perform a high-throughput computational search and find that 25 percent doping of aluminium and gallium in alpha iron, a naturally abundant and low-cost element, dramatically enhances the ANE by a factor of more than ten, reaching about 4 and 6 microvolts per kelvin at room temperature, respectively, close to the highest value reported so far. The comparison between experiment and theory indicates that the Fermi energy tuning to the nodal web-a flat band structure made of interconnected nodal lines-is the key for the strong enhancement in the transverse thermoelectric coefficient, reaching a value of about 5 amperes per kelvin per metre with a logarithmic temperature dependence. We have also succeeded in fabricating thin films that exhibit a large ANE at zero field, which could be suitable for designing low-cost, flexible microelectronic thermoelectric generators(11-13).