GSTDTAP

浏览/检索结果: 共98条,第1-10条 帮助

限定条件                        
已选(0)清除 条数/页:   排序方式:
The single-cell pathology landscape of breast cancer 期刊论文
NATURE, 2020, 578 (7796) : 615-+
作者:  Fouda, Abdelrahman Y.
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/03

Single-cell analyses have revealed extensive heterogeneity between and within human tumours(1-4), but complex single-cell phenotypes and their spatial context are not at present reflected in the histological stratification that is the foundation of many clinical decisions. Here we use imaging mass cytometry(5) to simultaneously quantify 35 biomarkers, resulting in 720 high-dimensional pathology images of tumour tissue from 352 patients with breast cancer, with long-term survival data available for 281 patients. Spatially resolved, single-cell analysis identified the phenotypes of tumour and stromal single cells, their organization and their heterogeneity, and enabled the cellular architecture of breast cancer tissue to be characterized on the basis of cellular composition and tissue organization. Our analysis reveals multicellular features of the tumour microenvironment and novel subgroups of breast cancer that are associated with distinct clinical outcomes. Thus, spatially resolved, single-cell analysis can characterize intratumour phenotypic heterogeneity in a disease-relevant manner, with the potential to inform patient-specific diagnosis.


A single-cell, spatially resolved analysis of breast cancer demonstrates the heterogeneity of tumour and stroma tissue and provides a more-detailed method of patient classification than the current histology-based system.


  
Senolytic CAR T cells reverse senescence-associated pathologies 期刊论文
NATURE, 2020, 583 (7814) : 127-+
作者:  Cortez, Jessica T.;  Montauti, Elena;  Shifrut, Eric;  Gatchalian, Jovylyn;  Zhang, Yusi;  Shaked, Oren;  Xu, Yuanming;  Roth, Theodore L.;  Simeonov, Dimitre R.;  Zhang, Yana;  Chen, Siqi;  Li, Zhongmei;  Woo, Jonathan M.;  Ho, Josephine;  Vogel, Ian A.
收藏  |  浏览/下载:67/0  |  提交时间:2020/07/03

Cellular senescence is characterized by stable cell-cycle arrest and a secretory program that modulates the tissue microenvironment(1,2). Physiologically, senescence serves as a tumour-suppressive mechanism that prevents the expansion of premalignant cells(3,4)and has a beneficial role in wound-healing responses(5,6). Pathologically, the aberrant accumulation of senescent cells generates an inflammatory milieu that leads to chronic tissue damage and contributes to diseases such as liver and lung fibrosis, atherosclerosis, diabetes and osteoarthritis(1,7). Accordingly, eliminating senescent cells from damaged tissues in mice ameliorates the symptoms of these pathologies and even promotes longevity(1,2,8-10). Here we test the therapeutic concept that chimeric antigen receptor (CAR) T cells that target senescent cells can be effective senolytic agents. We identify the urokinase-type plasminogen activator receptor (uPAR)(11)as a cell-surface protein that is broadly induced during senescence and show that uPAR-specific CAR T cells efficiently ablate senescent cells in vitro and in vivo. CAR T cells that target uPAR extend the survival of mice with lung adenocarcinoma that are treated with a senescence-inducing combination of drugs, and restore tissue homeostasis in mice in which liver fibrosis is induced chemically or by diet. These results establish the therapeutic potential of senolytic CAR T cells for senescence-associated diseases.


Chimeric antigen receptor (CAR) T cells targeting uPAR, a cell-surface protein that is upregulated on senescent cells, eliminate senescent cells in vitro and in vivo and reduce liver fibrosis in mice.


  
Olfactory sniffing signals consciousness in unresponsive patients with brain injuries 期刊论文
NATURE, 2020
作者:  Hellmuth, Susanne;  Gomez-H, Laura;  Pendas, Alberto M.;  Stemmann, Olaf
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

After severe brain injury, it can be difficult to determine the state of consciousness of a patient, to determine whether the patient is unresponsive or perhaps minimally conscious(1), and to predict whether they will recover. These diagnoses and prognoses are crucial, as they determine therapeutic strategies such as pain management, and can underlie end-of-life decisions(2,3). Nevertheless, there is an error rate of up to 40% in determining the state of consciousness in patients with brain injuries(4,5). Olfaction relies on brain structures that are involved in the basic mechanisms of arousal(6), and we therefore hypothesized that it may serve as a biomarker for consciousness(7). Here we use a non-verbal non-task-dependent measure known as the sniff response(8-11) to determine consciousness in patients with brain injuries. By measuring odorant-dependent sniffing, we gain a sensitive measure of olfactory function(10-15). We measured the sniff response repeatedly over time in patients with severe brain injuries and found that sniff responses significantly discriminated between unresponsive and minimally conscious states at the group level. Notably, at the single-patient level, if an unresponsive patient had a sniff response, this assured future regaining of consciousness. In addition, olfactory sniff responses were associated with long-term survival rates. These results highlight the importance of olfaction in human brain function, and provide an accessible tool that signals consciousness and recovery in patients with brain injuries.


Odorant-dependent sniff responses predicted the long-term survival rates of patients with severe brain injury, and discriminated between individuals who were unresponsive and in minimally conscious states.


  
Extra help for neuron grafts 期刊论文
NATURE, 2020, 582 (7810) : 39-40
作者:  Raz, Mical
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Grafts of stem-cell-derived precursors of dopamine neurons could be used to treat Parkinson'  s disease, but this approach has limitations. Injecting a growth factor three weeks after transplantation can overcome some of these limits.


Steps to improve function and survival of dopamine-neuron transplants.


  
Mechanisms and therapeutic implications of hypermutation in gliomas 期刊论文
NATURE, 2020, 580 (7804) : 517-+
作者:  Feng, Kaibo;  Quevedo, Raundi E.;  Kohrt, Jeffrey T.;  Oderinde, Martins S.;  Reilly, Usa;  White, M. Christina
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

A high tumour mutational burden (hypermutation) is observed in some gliomas(1-5)  however, the mechanisms by which hypermutation develops and whether it predicts the response to immunotherapy are poorly understood. Here we comprehensively analyse the molecular determinants of mutational burden and signatures in 10,294 gliomas. We delineate two main pathways to hypermutation: a de novo pathway associated with constitutional defects in DNA polymerase and mismatch repair (MMR) genes, and a more common post-treatment pathway, associated with acquired resistance driven by MMR defects in chemotherapy-sensitive gliomas that recur after treatment with the chemotherapy drug temozolomide. Experimentally, the mutational signature of post-treatment hypermutated gliomas was recapitulated by temozolomide-induced damage in cells with MMR deficiency. MMR-deficient gliomas were characterized by a lack of prominent T cell infiltrates, extensive intratumoral heterogeneity, poor patient survival and a low rate of response to PD-1 blockade. Moreover, although bulk analyses did not detect microsatellite instability in MMR-deficient gliomas, single-cell whole-genome sequencing analysis of post-treatment hypermutated glioma cells identified microsatellite mutations. These results show that chemotherapy can drive the acquisition of hypermutated populations without promoting a response to PD-1 blockade and supports the diagnostic use of mutational burden and signatures in cancer.


Temozolomide therapy seems to lead to mismatch repair deficiency and hypermutation in gliomas, but not to an increase in response to immunotherapy.


  
A plant genetic network for preventing dysbiosis in the phyllosphere 期刊论文
NATURE, 2020, 580 (7805) : 653-+
作者:  van den Brink, Susanne C.;  Alemany, Anna;  van Batenburg, Vincent;  Moris, Naomi;  Blotenburg, Marloes;  Vivie, Judith;  Baillie-Johnson, Peter;  Nichols, Jennifer;  Sonnen, Katharina F.;  Martinez Arias, Alfonso;  van Oudenaarden, Alexander
收藏  |  浏览/下载:59/0  |  提交时间:2020/07/03

Mutations in genes involved in immune signalling and vesicle trafficking cause defects in the leaf microbiome of Arabidopsis thaliana that result in damage to leaf tissues, suggesting mechanisms by which terrestrial plants control the level and diversity of endophytic phyllosphere microbiota.


The aboveground parts of terrestrial plants, collectively called the phyllosphere, have a key role in the global balance of atmospheric carbon dioxide and oxygen. The phyllosphere represents one of the most abundant habitats for microbiota colonization. Whether and how plants control phyllosphere microbiota to ensure plant health is not well understood. Here we show that the Arabidopsis quadruple mutant (min7 fls2 efr cerk1  hereafter, mfec)(1), simultaneously defective in pattern-triggered immunity and the MIN7 vesicle-trafficking pathway, or a constitutively activated cell death1 (cad1) mutant, carrying a S205F mutation in a membrane-attack-complex/perforin (MACPF)-domain protein, harbour altered endophytic phyllosphere microbiota and display leaf-tissue damage associated with dysbiosis. The Shannon diversity index and the relative abundance of Firmicutes were markedly reduced, whereas Proteobacteria were enriched in the mfec and cad1(S205F) mutants, bearing cross-kingdom resemblance to some aspects of the dysbiosis that occurs in human inflammatory bowel disease. Bacterial community transplantation experiments demonstrated a causal role of a properly assembled leaf bacterial community in phyllosphere health. Pattern-triggered immune signalling, MIN7 and CAD1 are found in major land plant lineages and are probably key components of a genetic network through which terrestrial plants control the level and nurture the diversity of endophytic phyllosphere microbiota for survival and health in a microorganism-rich environment.


  
A conserved dendritic-cell regulatory program limits antitumour immunity 期刊论文
NATURE, 2020, 580 (7802) : 257-+
作者:  Perry, Rachel J.;  Zhang, Dongyan;  Guerra, Mateus T.;  Brill, Allison L.;  Goedeke, Leigh;  Nasiri, Ali R.;  Rabin-Court, Aviva;  Wang, Yongliang;  Peng, Liang;  Dufour, Sylvie;  Zhang, Ye;  Zhang, Xian-Man;  Butrico, Gina M.;  Toussaint, Keshia;  Nozaki, Yuichi;  Cline, Gary W.;  Petersen, Kitt Falk;  Nathanson, Michael H.;  Ehrlich, Barbara E.;  Shulman, Gerald I.
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

After taking up tumour-associated antigens, dendritic cells in mouse and human tumours upregulate a regulatory gene program that limits dendritic cell immunostimulatory function, and modulating this program can rescue antitumor immunity in mice.


Checkpoint blockade therapies have improved cancer treatment, but such immunotherapy regimens fail in a large subset of patients. Conventional type 1 dendritic cells (DC1s) control the response to checkpoint blockade in preclinical models and are associated with better overall survival in patients with cancer, reflecting the specialized ability of these cells to prime the responses of CD8(+) T cells(1-3). Paradoxically, however, DC1s can be found in tumours that resist checkpoint blockade, suggesting that the functions of these cells may be altered in some lesions. Here, using single-cell RNA sequencing in human and mouse non-small-cell lung cancers, we identify a cluster of dendritic cells (DCs) that we name '  mature DCs enriched in immunoregulatory molecules'  (mregDCs), owing to their coexpression of immunoregulatory genes (Cd274, Pdcd1lg2 and Cd200) and maturation genes (Cd40, Ccr7 and Il12b). We find that the mregDC program is expressed by canonical DC1s and DC2s upon uptake of tumour antigens. We further find that upregulation of the programmed death ligand 1 protein-a key checkpoint molecule-in mregDCs is induced by the receptor tyrosine kinase AXL, while upregulation of interleukin (IL)-12 depends strictly on interferon-gamma and is controlled negatively by IL-4 signalling. Blocking IL-4 enhances IL-12 production by tumour-antigen-bearing mregDC1s, expands the pool of tumour-infiltrating effector T cells and reduces tumour burden. We have therefore uncovered a regulatory module associated with tumour-antigen uptake that reduces DC1 functionality in human and mouse cancers.


  
Dietary modifications for enhanced cancer therapy 期刊论文
NATURE, 2020, 579 (7800) : 507-517
作者:  Keller, Matthew D.;  Ching, Krystal L.;  Liang, Feng-Xia;  Dhabaria, Avantika;  Tam, Kayan;  Ueberheide, Beatrix M.;  Unutmaz, Derya;  Torres, Victor J.;  Cadwell, Ken
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/03

Tumours depend on nutrients supplied by the host for their growth and survival. Modifications to the host'  s diet can change nutrient availability in the tumour microenvironment, which might represent a promising strategy for inhibiting tumour growth. Dietary modifications can limit tumour-specific nutritional requirements, alter certain nutrients that target the metabolic vulnerabilities of the tumour, or enhance the cytotoxicity of anti-cancer drugs. Recent reports have suggested that modification of several nutrients in the diet can alter the efficacy of cancer therapies, and some of the newest developments in this quickly expanding field are reviewed here. The results discussed indicate that the dietary habits and nutritional state of a patient must be taken into account during cancer research and therapy.


  
Tertiary lymphoid structures improve immunotherapy and survival in melanoma (vol 577, pg 561, 2020) 期刊论文
NATURE, 2020
作者:  Tang, Yanhao;  Li, Lizhong;  Li, Tingxin;  Xu, Yang;  Liu, Song;  Barmak, Katayun;  Watanabe, Kenji;  Taniguchi, Takashi;  MacDonald, Allan H.;  Shan, Jie;  Mak, Kin Fai
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.


  
Decoy exosomes provide protection against bacterial toxins 期刊论文
NATURE, 2020, 579 (7798) : 260-+
作者:  Park, Jin Suk;  Burckhardt, Christoph J.;  Lazcano, Rossana;  Solis, Luisa M.;  Isogai, Tadamoto;  Li, Linqing;  Chen, Christopher S.;  Gao, Boning;  Minna, John D.;  Bachoo, Robert;  DeBerardinis, Ralph J.;  Danuser, Gaudenz
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

The production of pore-forming toxins that disrupt the plasma membrane of host cells is a common virulence strategy for bacterial pathogens such as methicillin-resistant Staphylococcus aureus (MRSA)(1-3). It is unclear, however, whether host species possess innate immune mechanisms that can neutralize pore-forming toxins during infection. We previously showed that the autophagy protein ATG16L1 is necessary for protection against MRSA strains encoding alpha-toxin(4)-a pore-forming toxin that binds the metalloprotease ADAM10 on the surface of a broad range of target cells and tissues(2,5,6). Autophagy typically involves the targeting of cytosolic material to the lysosome for degradation. Here we demonstrate that ATG16L1 and other ATG proteins mediate protection against alpha-toxin through the release of ADAM10 on exosomes-extracellular vesicles of endosomal origin. Bacterial DNA and CpG DNA induce the secretion of ADAM10-bearing exosomes from human cells as well as in mice. Transferred exosomes protect host cells in vitro by serving as scavengers that can bind multiple toxins, and improve the survival of mice infected with MRSA in vivo. These findings indicate that ATG proteins mediate a previously unknown form of defence in response to infection, facilitating the release of exosomes that serve as decoys for bacterially produced toxins.