GSTDTAP

浏览/检索结果: 共191条,第1-10条 帮助

限定条件                        
已选(0)清除 条数/页:   排序方式:
The age distribution of global soil carbon inferred from radiocarbon measurements 期刊论文
NATURE GEOSCIENCE, 2020
作者:  Shi, Zheng;  Allison, Steven D.;  He, Yujie;  Levine, Paul A.;  Hoyt, Alison M.;  Beem-Miller, Jeffrey;  Zhu, Qing;  Wieder, William R.;  Trumbore, Susan;  Randerson, James T.
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/06
Southern Ocean carbon sink enhanced by sea-ice feedbacks at the Antarctic Cold Reversal 期刊论文
NATURE GEOSCIENCE, 2020, 13 (7) : 489-+
作者:  Fogwill, C. J.;  Turney, C. S. M.;  Menviel, L.;  Baker, A.;  Weber, M. E.;  Ellis, B.;  Thomas, Z. A.;  Golledge, N. R.;  Etheridge, D.;  Rubino, M.;  Thornton, D. P.;  van Ommen, T. D.;  Moy, A. D.;  Curran, M. A. J.;  Davies, S.;  Bird, M., I;  Munksgaard, N. C.;  Rootes, C. M.;  Millman, H.;  Vohra, J.;  Rivera, A.;  Mackintosh, A.;  Pike, J.;  Hall, I. R.;  Bagshaw, E. A.;  Rainsley, E.;  Bronk-Ramsey, C.;  Montenari, M.;  Cage, A. G.;  Harris, M. R. P.;  Jones, R.;  Power, A.;  Love, J.;  Young, J.;  Weyrich, L. S.;  Cooper, A.
收藏  |  浏览/下载:14/0  |  提交时间:2020/06/29
Insights into the assembly and activation of the microtubule nucleator gamma-TuRC 期刊论文
NATURE, 2020, 578 (7795) : 467-+
作者:  Cyranoski, David
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

Microtubules are dynamic polymers of alpha- and beta-tubulin and have crucial roles in cell signalling, cell migration, intracellular transport and chromosome segregation(1). They assemble de novo from alpha beta-tubulin dimers in an essential process termed microtubule nucleation. Complexes that contain the protein gamma-tubulin serve as structural templates for the microtubule nucleation reaction(2). In vertebrates, microtubules are nucleated by the 2.2-megadalton gamma-tubulin ring complex (gamma-TuRC), which comprises gamma-tubulin, five related gamma-tubulin complex proteins (GCP2-GCP6) and additional factors(3). GCP6 is unique among the GCP proteins because it carries an extended insertion domain of unknown function. Our understanding of microtubule formation in cells and tissues is limited by a lack of high-resolution structural information on the gamma-TuRC. Here we present the cryo-electron microscopy structure of gamma-TuRC from Xenopus laevis at 4.8 angstrom global resolution, and identify a 14-spoked arrangement of GCP proteins and gamma-tubulins in a partially flexible open left-handed spiral with a uniform sequence of GCP variants. By forming specific interactions with other GCP proteins, the GCP6-specific insertion domain acts as a scaffold for the assembly of the gamma-TuRC. Unexpectedly, we identify actin as a bona fide structural component of the gamma-TuRC with functional relevance in microtubule nucleation. The spiral geometry of gamma-TuRC is suboptimal for microtubule nucleation and a controlled conformational rearrangement of the gamma-TuRC is required for its activation. Collectively, our cryo-electron microscopy reconstructions provide detailed insights into the molecular organization, assembly and activation mechanism of vertebrate gamma-TuRC, and will serve as a framework for the mechanistic understanding of fundamental biological processes associated with microtubule nucleation, such as meiotic and mitotic spindle formation and centriole biogenesis(4).


The cryo-EM structure of the gamma-tubulin ring complex (gamma-TuRC) from Xenopus laevis provides insights into the molecular organization of the complex, and shows that actin is a structural component that is functionally relevant to microtubule nucleation.


  
Estimating US fossil fuel CO2 emissions from measurements of C-14 in atmospheric CO2 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (24) : 13300-13307
作者:  Basu, Sourish;  Lehman, Scott J.;  Miller, John B.;  Andrews, Arlyn E.;  Sweeney, Colm;  Gurney, Kevin R.;  Xu, Xiaomei;  Southon, John;  Tans, Pieter P.
收藏  |  浏览/下载:14/0  |  提交时间:2020/06/09
fossil fuel CO2  radiocarbon  atmospheric inverse modeling  
Nearest neighbours reveal fast and slow components of motor learning 期刊论文
NATURE, 2020, 577 (7791) : 526-+
作者:  Kollmorgen, Sepp;  Hahnloser, Richard H. R.;  Mante, Valerio
收藏  |  浏览/下载:4/0  |  提交时间:2020/07/03

A new method for analysing change in high-dimensional data is based on nearest-neighbour statistics and is applied here to song dynamics during vocal learning in zebra finches, but could potentially be applied to other biological and artificial behaviours.


Changes in behaviour resulting from environmental influences, development and learning(1-5) are commonly quantified on the basis of a few hand-picked features(2-4,6,7) (for example, the average pitch of acoustic vocalizations(3)), assuming discrete classes of behaviours (such as distinct vocal syllables)(2,3,8-10). However, such methods generalize poorly across different behaviours and model systems and may miss important components of change. Here we present a more-general account of behavioural change that is based on nearest-neighbour statistics(11-13), and apply it to song development in a songbird, the zebra finch(3). First, we introduce the concept of '  repertoire dating'  , whereby each rendition of a behaviour (for example, each vocalization) is assigned a repertoire time, reflecting when similar renditions were typical in the behavioural repertoire. Repertoire time isolates the components of vocal variability that are congruent with long-term changes due to vocal learning and development, and stratifies the behavioural repertoire into '  regressions'  , '  anticipations'  and '  typical renditions'  . Second, we obtain a holistic, yet low-dimensional, description of vocal change in terms of a stratified '  behavioural trajectory'  , revealing numerous previously unrecognized components of behavioural change on fast and slow timescales, as well as distinct patterns of overnight consolidation(1,2,4,14,15) across the behavioral repertoire. We find that diurnal changes in regressions undergo only weak consolidation, whereas anticipations and typical renditions consolidate fully. Because of its generality, our nonparametric description of how behaviour evolves relative to itself-rather than to a potentially arbitrary, experimenter-defined goal(2,3,14,16)-appears well suited for comparing learning and change across behaviours and species(17,18), as well as biological and artificial systems(5).


  
Strain engineering and epitaxial stabilization of halide perovskites 期刊论文
NATURE, 2020, 577 (7789) : 209-+
作者:  Chen, Yimu;  Lei, Yusheng;  Li, Yuheng;  Yu, Yugang;  Cai, Jinze;  Chiu, Ming-Hui;  Rao, Rahul;  Gu, Yue;  Wang, Chunfeng;  Choi, Woojin;  Hu, Hongjie;  Wang, Chonghe;  Li, Yang;  Song, Jiawei;  Zhang, Jingxin;  Qi, Baiyan;  Lin, Muyang;  Zhang, Zhuorui;  Islam, Ahmad E.;  Maruyama, Benji;  Dayeh, Shadi;  Li, Lain-Jong;  Yang, Kesong;  Lo, Yu-Hwa;  Xu, Sheng
收藏  |  浏览/下载:26/0  |  提交时间:2020/07/03

Strain engineering is a powerful tool with which to enhance semiconductor device performance(1,2). Halide perovskites have shown great promise in device applications owing to their remarkable electronic and optoelectronic properties(3-5). Although applying strain to halide perovskites has been frequently attempted, including using hydrostatic pressurization(6-8), electrostriction(9), annealing(10-12), van der Waals force(13), thermal expansion mismatch(14), and heat-induced substrate phase transition(15), the controllable and device-compatible strain engineering of halide perovskites by chemical epitaxy remains a challenge, owing to the absence of suitable lattice-mismatched epitaxial substrates. Here we report the strained epitaxial growth of halide perovskite single-crystal thin films on lattice-mismatched halide perovskite substrates. We investigated strain engineering of a-formamidinium lead iodide (alpha-FAPbI(3)) using both experimental techniques and theoretical calculations. By tailoring the substrate composition-and therefore its lattice parameter-a compressive strain as high as 2.4 per cent is applied to the epitaxial alpha-FAPbI(3) thin film. We demonstrate that this strain effectively changes the crystal structure, reduces the bandgap and increases the hole mobility of alpha-FAPbI(3). Strained epitaxy is also shown to have a substantial stabilization effect on the alpha-FAPbI(3) phase owing to the synergistic effects of epitaxial stabilization and strain neutralization. As an example, strain engineering is applied to enhance the performance of an alpha-FAPbI(3)-based photodetector.


  
Single-chain heteropolymers transport protons selectively and rapidly 期刊论文
NATURE, 2020, 577 (7789) : 216-+
作者:  Jiang, Tao;  Hall, Aaron;  Eres, Marco;  Hemmatian, Zahra;  Qiao, Baofu;  Zhou, Yun;  Ruan, Zhiyuan;  Couse, Andrew D.;  Heller, William T.;  Huang, Haiyan;  de la Cruz, Monica Olvera;  Rolandi, Marco;  Xu, Ting
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

Precise protein sequencing and folding are believed to generate the structure and chemical diversity of natural channels(1,2), both of which are essential to synthetically achieve proton transport performance comparable to that seen in natural systems. Geometrically defined channels have been fabricated using peptides, DNAs, carbon nanotubes, sequence-defined polymers and organic frameworks(3-13). However, none of these channels rivals the performance observed in their natural counterparts. Here we show that without forming an atomically structured channel, four-monomer-based random heteropolymers (RHPs)(14) can mimic membrane proteins and exhibit selective proton transport across lipid bilayers at a rate similar to those of natural proton channels. Statistical control over the monomer distribution in an RHP leads to segmental heterogeneity in hydrophobicity, which facilitates the insertion of single RHPs into the lipid bilayers. It also results in bilayer-spanning segments containing polar monomers that promote the formation of hydrogen-bonded chains(15,16) for proton transport. Our study demonstrates the importance of the adaptability that is enabled by statistical similarity among RHP chains and of the modularity provided by the chemical diversity of monomers, to achieve uniform behaviour in heterogeneous systems. Our results also validate statistical randomness as an unexplored approach to realize protein-like behaviour at the single-polymer-chain level in a predictable manner.


  
In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressures 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (22) : 11981-11986
作者:  Morard, Guillaume;  Hernandez, Jean-Alexis;  Guarguaglini, Marco;  Bolis, Riccardo;  Benuzzi-Mounaix, Alessandra;  Vinci, Tommaso;  Fiquet, Guillaume;  Baron, Marzena A.;  Shim, Sang Heon;  Ko, Byeongkwan;  Gleason, Arianna E.;  Mao, Wendy L.;  Alonso-Mori, Roberto;  Lee, Hae Ja;  Nagler, Bob;  Galtier, Eric;  Sokaras, Dimosthenis;  Glenzer, Siegfried H.;  Andrault, Denis;  Garbarino, Gaston;  Mezouar, Mohamed;  Schuster, Anja K.;  Ravasio, Alessandra
收藏  |  浏览/下载:11/0  |  提交时间:2020/05/20
amorphous silicates  high pressure  shock compression  static compression  XFEL diffraction  
Localization and delocalization of light in photonic moire lattices 期刊论文
NATURE, 2020, 577 (7788) : 42-+
作者:  Wang, Peng;  Zheng, Yuanlin;  Chen, Xianfeng;  Huang, Changming;  Kartashov, Yaroslav V.;  Torner, Lluis;  Konotop, Vladimir V.;  Ye, Fangwei
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

Moire lattices consist of two superimposed identical periodic structures with a relative rotation angle. Moire lattices have several applications in everyday life, including artistic design, the textile industry, architecture, image processing, metrology and interferometry. For scientific studies, they have been produced using coupled graphene-hexagonal boron nitride monolayers(1,2), graphene-graphene layers(3,4) and graphene quasicrystals on a silicon carbide surface(5). The recent surge of interest in moire lattices arises from the possibility of exploring many salient physical phenomena in such systems  examples include commensurable-incommensurable transitions and topological defects(2), the emergence of insulating states owing to band flattening(3,6), unconventional superconductivity(4) controlled by the rotation angle(7,8), the quantum Hall effect(9), the realization of non-Abelian gauge potentials(10) and the appearance of quasicrystals at special rotation angles(11). A fundamental question that remains unexplored concerns the evolution of waves in the potentials defined by moire lattices. Here we experimentally create two-dimensional photonic moire lattices, which-unlike their material counterparts-have readily controllable parameters and symmetry, allowing us to explore transitions between structures with fundamentally different geometries (periodic, general aperiodic and quasicrystal). We observe localization of light in deterministic linear lattices that is based on flatband physics(6), in contrast to previous schemes based on light diffusion in optical quasicrystals(12), where disorder is required(13) for the onset of Anderson localization(14) (that is, wave localization in random media). Using commensurable and incommensurable moire patterns, we experimentally demonstrate the twodimensional localization-delocalization transition of light. Moire lattices may feature an almost arbitrary geometry that is consistent with the crystallographic symmetry groups of the sublattices, and therefore afford a powerful tool for controlling the properties of light patterns and exploring the physics of periodic-aperiodic phase transitions and two-dimensional wavepacket phenomena relevant to several areas of science, including optics, acoustics, condensed matter and atomic physics.


  
HBO1 is required for the maintenance of leukaemia stem cells 期刊论文
NATURE, 2020, 577 (7789) : 266-+
作者:  MacPherson, Laura;  Anokye, Juliana;  Yeung, Miriam M.;  Lam, Enid Y. N.;  Chan, Yih-Chih;  Weng, Chen-Fang;  Yeh, Paul;  Knezevic, Kathy;  Butler, Miriam S.;  Hoegl, Annabelle;  Chan, Kah-Lok;  Burr, Marian L.;  Gearing, Linden J.;  Willson, Tracy;  Liu, Joy;  Choi, Jarny;  Yang, Yuqing;  Bilardi, Rebecca A.;  Falk, Hendrik;  Nghi Nguyen;  Stupple, Paul A.;  Peat, Thomas S.;  Zhang, Ming;  de Silva, Melanie;  Carrasco-Pozo, Catalina;  Avery, Vicky M.;  Khoo, Poh Sim;  Dolezal, Olan;  Dennis, Matthew L.;  Nuttall, Stewart;  Surjadi, Regina;  Newman, Janet;  Ren, Bin;  Leaver, David J.;  Sun, Yuxin;  Baell, Jonathan B.;  Dovey, Oliver;  Vassiliou, George S.;  Grebien, Florian;  Dawson, Sarah-Jane;  Street, Ian P.;  Monahan, Brendon J.;  Burns, Christopher J.;  Choudhary, Chunaram;  Blewitt, Marnie E.;  Voss, Anne K.;  Thomas, Tim;  Dawson, Mark A.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs)(1). Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs. We identify the MYST acetyltransferase HBO1 (also known as KAT7 or MYST2) and several known members of the HBO1 protein complex as critical regulators of LSC maintenance. Using CRISPR domain screening and quantitative mass spectrometry, we identified the histone acetyltransferase domain of HBO1 as being essential in the acetylation of histone H3 at K14. H3 acetylated at K14 (H3K14ac) facilitates the processivity of RNA polymerase II to maintain the high expression of key genes (including Hoxa9 and Hoxa10) that help to sustain the functional properties of LSCs. To leverage this dependency therapeutically, we developed a highly potent small-molecule inhibitor of HBO1 and demonstrate its mode of activity as a competitive analogue of acetyl-CoA. Inhibition of HBO1 phenocopied our genetic data and showed efficacy in a broad range of human cell lines and primary AML cells from patients. These biological, structural and chemical insights into a therapeutic target in AML will enable the clinical translation of these findings.