GSTDTAP

浏览/检索结果: 共76条,第1-10条 帮助

限定条件                            
已选(0)清除 条数/页:   排序方式:
Remote assessment of the fate of phytoplankton in the Southern Ocean sea-ice zone 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Moreau, Sebastien;  Boyd, Philip W.;  Strutton, Peter G.
收藏  |  浏览/下载:5/0  |  提交时间:2020/06/22
A multiomic analysis of in situ coral-turf algal interactions 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (24) : 13588-13595
作者:  Roach, Ty N. F.;  Little, Mark;  Arts, Milou G. I.;  Huckeba, Joel;  Haas, Andreas F.;  George, Emma E.;  Quinn, Robert A.;  Cobian-Guemes, Ana G.;  Naliboff, Douglas S.;  Silveria, Cynthia B.;  Vermeij, Mark J. A.;  Kelly, Linda Wegley;  Dorrestein, Pieter C.;  Rohwer, Forest
收藏  |  浏览/下载:9/0  |  提交时间:2020/06/09
holobiont  metabolomics  metagenomics  microbial ecology  coral reefs  
Climate adaptation by crop migration 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Sloat, Lindsey L.;  Davis, Steven J.;  Gerber, James S.;  Moore, Frances C.;  Ray, Deepak K.;  West, Paul C.;  Mueller, Nathaniel D.
收藏  |  浏览/下载:9/0  |  提交时间:2020/05/13
Asynchronous carbon sink saturation in African and Amazonian tropical forests 期刊论文
NATURE, 2020, 579 (7797) : 80-+
作者:  Wannes Hubau;  Simon L. Lewis;  Oliver L. Phillips;  Kofi Affum-Baffoe;  Hans Beeckman;  Aida Cuní;  -Sanchez;  Armandu K. Daniels;  Corneille E. N. Ewango;  Sophie Fauset;  Jacques M. Mukinzi;  Douglas Sheil;  Bonaventure Sonké;  Martin J. P. Sullivan;  Terry C. H. Sunderland;  Hermann Taedoumg;  Sean C. Thomas;  Lee J. T. White;  Katharine A. Abernethy;  Stephen Adu-Bredu;  Christian A. Amani;  Timothy R. Baker;  Lindsay F. Banin;  Fidè;  le Baya;  Serge K. Begne;  Amy C. Bennett;  Fabrice Benedet;  Robert Bitariho;  Yannick E. Bocko;  Pascal Boeckx;  Patrick Boundja;  Roel J. W. Brienen;  Terry Brncic;  Eric Chezeaux;  George B. Chuyong;  Connie J. Clark;  Murray Collins;  James A. Comiskey;  David A. Coomes;  Greta C. Dargie;  Thales de Haulleville;  Marie Noel Djuikouo Kamdem;  Jean-Louis Doucet;  Adriane Esquivel-Muelbert;  Ted R. Feldpausch;  Alusine Fofanah;  Ernest G. Foli;  Martin Gilpin;  Emanuel Gloor;  Christelle Gonmadje;  Sylvie Gourlet-Fleury;  Jefferson S. Hall;  Alan C. Hamilton;  David J. Harris;  Terese B. Hart;  Mireille B. N. Hockemba;  Annette Hladik;  Suspense A. Ifo;  Kathryn J. Jeffery;  Tommaso Jucker;  Emmanuel Kasongo Yakusu;  Elizabeth Kearsley;  David Kenfack;  Alexander Koch;  Miguel E. Leal;  Aurora Levesley;  Jeremy A. Lindsell;  Janvier Lisingo;  Gabriela Lopez-Gonzalez;  Jon C. Lovett;  Jean-Remy Makana;  Yadvinder Malhi;  Andrew R. Marshall;  Jim Martin;  Emanuel H. Martin;  Faustin M. Mbayu;  Vincent P. Medjibe;  Vianet Mihindou;  Edward T. A. Mitchard;  Sam Moore;  Pantaleo K. T. Munishi;  Natacha Nssi Bengone;  Lucas Ojo;  Fidè;  le Evouna Ondo;  Kelvin S.-H. Peh;  Georgia C. Pickavance;  Axel Dalberg Poulsen;  John R. Poulsen;  Lan Qie;  Jan Reitsma;  Francesco Rovero;  Michael D. Swaine;  Joey Talbot;  James Taplin;  David M. Taylor;  Duncan W. Thomas;  Benjamin Toirambe;  John Tshibamba Mukendi;  Darlington Tuagben;  Peter M. Umunay;  Geertje M. F. van der Heijden;  Hans Verbeeck;  Jason Vleminckx;  Simon Willcock;  Hannsjö;  rg Wö;  ll;  John T. Woods;  Lise Zemagho
收藏  |  浏览/下载:30/0  |  提交时间:2020/05/13

Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions(1-3). Climate-driven vegetation models typically predict that this tropical forest '  carbon sink'  will continue for decades(4,5). Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53-0.79), in contrast to the long-term decline in Amazonian forests(6). Therefore the carbon sink responses of Earth'  s two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature(7-9). Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth'  s intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass(10) reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth'  s climate.


  
Anthropogenically-driven increases in the risks of summertime compound hot extremes 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Wang, Jun;  Chen, Yang;  Tett, Simon F. B.;  Yan, Zhongwei;  Zhai, Panmao;  Feng, Jinming;  Xia, Jiangjiang
收藏  |  浏览/下载:11/0  |  提交时间:2020/05/13
Palaeoclimate evidence of vulnerable permafrost during times of low sea ice 期刊论文
NATURE, 2020, 577 (7789) : 221-+
作者:  Vaks, A.;  Mason, A. J.;  Breitenbach, S. F. M.;  Kononov, A. M.;  Osinzev, A. V.;  Rosensaft, M.;  Borshevsky, A.;  Gutareva, O. S.;  Henderson, G. M.
收藏  |  浏览/下载:11/0  |  提交时间:2020/05/13

Climate change in the Arctic is occurring rapidly, and projections suggest the complete loss of summer sea ice by the middle of this century(1). The sensitivity of permanently frozen ground (permafrost) in the Northern Hemisphere to warming is less clear, and its long-term trends are harder to monitor than those of sea ice. Here we use palaeoclimate data to show that Siberian permafrost is robust to warming when Arctic sea ice is present, but vulnerable when it is absent. Uranium-lead chronology of carbonate deposits (speleothems) in a Siberian cave located at the southern edge of continuous permafrost reveals periods in which the overlying ground was not permanently frozen. The speleothem record starts 1.5 million years ago (Ma), a time when greater equator-to-pole heat transport led to a warmer Northern Hemisphere(2). The growth of the speleothems indicates that permafrost at the cave site was absent at that time, becoming more frequent from about 1.35 Ma, as the Northern Hemisphere cooled, and permanent after about 0.4 Ma. This history mirrors that of year-round sea ice in the Arctic Ocean, which was largely absent before about 0.4 Ma (ref.(3)), but continuously present since that date. The robustness of permafrost when sea ice is present, as well as the increased permafrost vulnerability when sea ice is absent, can be explained by changes in both heat and moisture transport. Reduced sea ice may contribute to warming of Arctic air(4-6), which can lead to warming far inland(7). Open Arctic waters also increase the source of moisture and increase autumn snowfall over Siberia, insulating the ground from low winter temperatures(8-10). These processes explain the relationship between an ice-free Arctic and permafrost thawing before 0.4 Ma. If these processes continue during modern climate change, future loss of summer Arctic sea ice will accelerate the thawing of Siberian permafrost.


  
Spatial heterogeneity in climate change effects decouples the long-term dynamics of wild reindeer populations in the high Arctic 期刊论文
GLOBAL CHANGE BIOLOGY, 2019, 25 (11) : 3656-3668
作者:  Hansen, Brage Bremset;  Pedersen, Ashild Onvik;  Peeters, Bart;  Le Moullec, Mathilde;  Albon, Steve D.;  Herfindal, Ivar;  Saether, Bernt-Erik;  Grotan, Vidar;  Aanes, Ronny
收藏  |  浏览/下载:12/0  |  提交时间:2019/11/27
Arctic  caribou and reindeer  climate change  meta-population  population dynamics  spatial heterogeneity  spatial synchrony  ungulate  
Divergent carbon cycle response of forest and grass-dominated northern temperate ecosystems to record winter warming 期刊论文
GLOBAL CHANGE BIOLOGY, 2019
作者:  Sanders-DeMott, Rebecca;  Ouimette, Andrew P.;  Lepine, Lucie C.;  Fogarty, Sean Z.;  Burakowski, Elizabeth A.;  Contosta, Alexandra R.;  Ollinger, Scott V.
收藏  |  浏览/下载:7/0  |  提交时间:2019/11/27
eddy covariance  grassland  land use  phenology  snow  temperate forest  vernal transition  winter climate change  
Snowmelt and early to mid-growing season water availability augment tree growth during rapid warming in southern Asian boreal forests 期刊论文
GLOBAL CHANGE BIOLOGY, 2019, 25 (10) : 3462-3471
作者:  Zhang, Xianliang;  39;Orangeville, Loic
收藏  |  浏览/下载:9/0  |  提交时间:2019/11/27
boreal forest  permafrost  rapid warming  Scots pine  snowmelt  tree rings  
ENSO and NAO affect long-term leaf litter dynamics and stoichiometry of Scots pine and European beech mixedwoods 期刊论文
GLOBAL CHANGE BIOLOGY, 2019, 25 (9) : 3070-3090
作者:  Gonzalez de Andres, Ester;  Blanco, Juan A.;  Bosco Imbert, J.;  Guan, Biing T.;  Lo, Yueh-Hsin;  Castillo, Federico J.
收藏  |  浏览/下载:19/0  |  提交时间:2019/11/27
ensemble empirical mode decomposition (EEMD)  Fagus sylvatica  leaf litter  nutrient cycling  nutrient limitation  Pinus sylvestris  Pyrenees  stoichiometry  structural equation model (SEM)