GSTDTAP

浏览/检索结果: 共96条,第1-10条 帮助

限定条件                                
已选(0)清除 条数/页:   排序方式:
On the influence of density and morphology on the Urban Heat Island intensity 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Li, Yunfei;  Schubert, Sebastian;  Kropp, Juergen P.;  Rybski, Diego
收藏  |  浏览/下载:6/0  |  提交时间:2020/06/01
Sediment controls dynamic behavior of a Cordilleran Ice Stream at the Last Glacial Maximum 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Cowan, Ellen A.;  Zellers, Sarah D.;  Mueller, Juliane;  Walczak, Maureen H.;  Worthington, Lindsay L.;  Caissie, Beth E.;  Clary, Wesley A.;  Jaeger, John M.;  Gulick, Sean P. S.;  Pratt, Jacob W.;  Mix, Alan C.;  Fallon, Stewart J.
收藏  |  浏览/下载:10/0  |  提交时间:2020/05/13
Preparation of cyclohexene isotopologues and stereoisotopomers from benzene 期刊论文
NATURE, 2020, 581 (7808) : 288-+
作者:  Shimazaki, Yuya;  Schwartz, Ido;  Watanabe, Kenji;  Taniguchi, Takashi;  Kroner, Martin;  Imamoglu, Atac
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

The hydrogen isotopes deuterium (D) and tritium (T) have become essential tools in chemistry, biology and medicine(1). Beyond their widespread use in spectroscopy, mass spectrometry and mechanistic and pharmacokinetic studies, there has been considerable interest in incorporating deuterium into drug molecules(1). Deutetrabenazine, a deuterated drug that is promising for the treatment of Huntington'  s disease(2), was recently approved by the United States'  Food and Drug Administration. The deuterium kinetic isotope effect, which compares the rate of a chemical reaction for a compound with that for its deuterated counterpart, can be substantial(1,3,4). The strategic replacement of hydrogen with deuterium can affect both the rate of metabolism and the distribution of metabolites for a compound(5), improving the efficacy and safety of a drug. The pharmacokinetics of a deuterated compound depends on the location(s) of deuterium. Although methods are available for deuterium incorporation at both early and late stages of the synthesis of a drug(6,7), these processes are often unselective and the stereoisotopic purity can be difficult to measure(7,8). Here we describe the preparation of stereoselectively deuterated building blocks for pharmaceutical research. As a proof of concept, we demonstrate a four-step conversion of benzene to cyclohexene with varying degrees of deuterium incorporation, via binding to a tungsten complex. Using different combinations of deuterated and proteated acid and hydride reagents, the deuterated positions on the cyclohexene ring can be controlled precisely. In total, 52 unique stereoisotopomers of cyclohexene are available, in the form of ten different isotopologues. This concept can be extended to prepare discrete stereoisotopomers of functionalized cyclohexenes. Such systematic methods for the preparation of pharmacologically active compounds as discrete stereoisotopomers could improve the pharmacological and toxicological properties of drugs and provide mechanistic information related to their distribution and metabolism in the body.


Cyclohexene isotopologues and stereoisotopomers with varying degrees of deuteration are formed by binding a tungsten complex to benzene, which facilitates the selective incorporation of deuterium into any position on the ring.


  
Ionic solids from common colloids 期刊论文
NATURE, 2020, 580 (7804) : 487-+
作者:  Delord, T.;  Huillery, P.;  Nicolas, L.;  Hetet, G.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/03

Oppositely charged colloidal particles are assembled in water through an approach that allows electrostatic interactions to be precisely tuned to generate macroscopic single crystals.


From rock salt to nanoparticle superlattices, complex structure can emerge from simple building blocks that attract each other through Coulombic forces(1-4). On the micrometre scale, however, colloids in water defy the intuitively simple idea of forming crystals from oppositely charged partners, instead forming non-equilibrium structures such as clusters and gels(5-7). Although various systems have been engineered to grow binary crystals(8-11), native surface charge in aqueous conditions has not been used to assemble crystalline materials. Here we form ionic colloidal crystals in water through an approach that we refer to as polymer-attenuated Coulombic self-assembly. The key to crystallization is the use of a neutral polymer to keep particles separated by well defined distances, allowing us to tune the attractive overlap of electrical double layers, directing particles to disperse, crystallize or become permanently fixed on demand. The nucleation and growth of macroscopic single crystals is demonstrated by using the Debye screening length to fine-tune assembly. Using a variety of colloidal particles and commercial polymers, ionic colloidal crystals isostructural to caesium chloride, sodium chloride, aluminium diboride and K4C60 are selected according to particle size ratios. Once fixed by simply diluting out solution salts, crystals are pulled out of the water for further manipulation, demonstrating an accurate translation from solution-phase assembly to dried solid structures. In contrast to other assembly approaches, in which particles must be carefully engineered to encode binding information(12-18), polymer-attenuated Coulombic self-assembly enables conventional colloids to be used as model colloidal ions, primed for crystallization.


  
Coastal wetlands reduce property damage during tropical cyclones 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (11) : 5719-5725
作者:  Sun, Fanglin;  Carson, Richard T.
收藏  |  浏览/下载:13/0  |  提交时间:2020/05/13
ecosystem services  economic valuation  climate change  
Operation of a silicon quantum processor unit cell above one kelvin 期刊论文
NATURE, 2020, 580 (7803) : 350-+
作者:  Han, Kyuho;  Pierce, Sarah E.;  Li, Amy;  Spees, Kaitlyn;  Anderson, Grace R.;  Seoane, Jose A.;  Lo, Yuan-Hung;  Dubreuil, Michael;  Olivas, Micah;  Kamber, Roarke A.;  Wainberg, Michael;  Kostyrko, Kaja;  Kelly, Marcus R.;  Yousefi, Maryam;  Simpkins, Scott W.;  Yao, David
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Quantum computers are expected to outperform conventional computers in several important applications, from molecular simulation to search algorithms, once they can be scaled up to large numbers-typically millions-of quantum bits (qubits)(1-3). For most solid-state qubit technologies-for example, those using superconducting circuits or semiconductor spins-scaling poses a considerable challenge because every additional qubit increases the heat generated, whereas the cooling power of dilution refrigerators is severely limited at their operating temperature (less than 100 millikelvin)(4-6). Here we demonstrate the operation of a scalable silicon quantum processor unit cell comprising two qubits confined to quantum dots at about 1.5 kelvin. We achieve this by isolating the quantum dots from the electron reservoir, and then initializing and reading the qubits solely via tunnelling of electrons between the two quantum dots(7-9). We coherently control the qubits using electrically driven spin resonance(10,11) in isotopically enriched silicon(12 28)Si, attaining single-qubit gate fidelities of 98.6 per cent and a coherence time of 2 microseconds during '  hot'  operation, comparable to those of spin qubits in natural silicon at millikelvin temperatures(13-16). Furthermore, we show that the unit cell can be operated at magnetic fields as low as 0.1 tesla, corresponding to a qubit control frequency of 3.5 gigahertz, where the qubit energy is well below the thermal energy. The unit cell constitutes the core building block of a full-scale silicon quantum computer and satisfies layout constraints required by error-correction architectures(8),(17). Our work indicates that a spin-based quantum computer could be operated at increased temperatures in a simple pumped He-4 system (which provides cooling power orders of magnitude higher than that of dilution refrigerators), thus potentially enabling the integration of classical control electronics with the qubit array(18,19).


  
Control and single-shot readout of an ion embedded in a nanophotonic cavity 期刊论文
NATURE, 2020, 580 (7802) : 201-+
作者:  Rollie, Clare;  Chevallereau, Anne;  Watson, Bridget N. J.;  Chyou, Te-yuan;  Fradet, Olivier;  McLeod, Isobel;  Fineran, Peter C.;  Brown, Chris M.;  Gandon, Sylvain;  Westra, Edze R.
收藏  |  浏览/下载:22/0  |  提交时间:2020/07/03

Distributing entanglement over long distances using optical networks is an intriguing macroscopic quantum phenomenon with applications in quantum systems for advanced computing and secure communication(1,2). Building quantum networks requires scalable quantum light-matter interfaces(1) based on atoms(3), ions(4) or other optically addressable qubits. Solid-state emitters(5), such as quantum dots and defects in diamond or silicon carbide(6-10), have emerged as promising candidates for such interfaces. So far, it has not been possible to scale up these systems, motivating the development of alternative platforms. A central challenge is identifying emitters that exhibit coherent optical and spin transitions while coupled to photonic cavities that enhance the light-matter interaction and channel emission into optical fibres. Rare-earth ions in crystals are known to have highly coherent 4f-4f optical and spin transitions suited to quantum storage and transduction(11-15), but only recently have single rare-earth ions been isolated(16,17) and coupled to nanocavities(18,19). The crucial next steps towards using single rare-earth ions for quantum networks are realizing long spin coherence and single-shot readout in photonic resonators. Here we demonstrate spin initialization, coherent optical and spin manipulation, and high-fidelity single-shot optical readout of the hyperfine spin state of single Yb-171(3+) ions coupled to a nanophotonic cavity fabricated in an yttrium orthovanadate host crystal. These ions have optical and spin transitions that are first-order insensitive to magnetic field fluctuations, enabling optical linewidths of less than one megahertz and spin coherence times exceeding thirty milliseconds for cavity-coupled ions, even at temperatures greater than one kelvin. The cavity-enhanced optical emission rate facilitates efficient spin initialization and single-shot readout with conditional fidelity greater than 95 per cent. These results showcase a solid-state platform based on single coherent rare-earth ions for the future quantum internet.


Single ytterbium ion qubits in nanophotonic cavities have long coherence times and can be optically read out in a single shot, establishing them as excellent candidates for optical quantum networks.


  
Current-driven magnetic domain-wall logic 期刊论文
NATURE, 2020, 579 (7798) : 214-+
作者:  Culp, Elizabeth J.;  Waglechner, Nicholas;  Wang, Wenliang;  Fiebig-Comyn, Aline A.;  Hsu, Yen-Pang;  Koteva, Kalinka;  Sychantha, David;  Coombes, Brian K.;  Van Nieuwenhze, Michael S.;  Brun, Yves, V;  Wright, Gerard D.
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Spin-based logic architectures provide nonvolatile data retention, near-zero leakage, and scalability, extending the technology roadmap beyond complementary metal-oxide-semiconductor logic(1-13). Architectures based on magnetic domain walls take advantage of the fast motion, high density, non-volatility and flexible design of domain walls to process and store information(1,3,14-16). Such schemes, however, rely on domain-wall manipulation and clocking using an external magnetic field, which limits their implementation in dense, large-scale chips. Here we demonstrate a method for performing all-electric logic operations and cascading using domain-wall racetracks. We exploit the chiral coupling between neighbouring magnetic domains induced by the interfacial Dzyaloshinskii-Moriya interaction(17-20), which promotes non-collinear spin alignment, to realize a domain-wall inverter, the essential basic building block in all implementations of Boolean logic. We then fabricate reconfigurable NAND and NOR logic gates, and perform operations with current-induced domain-wall motion. Finally, we cascade several NAND gates to build XOR and full adder gates, demonstrating electrical control of magnetic data and device interconnection in logic circuits. Our work provides a viable platform for scalable all-electric magnetic logic, paving the way for memory-in-logic applications.


  
Synthesis of rare sugar isomers through site-selective epimerization 期刊论文
NATURE, 2020: 403-+
作者:  Jackson, Hartland W.;  Fischer, Jana R.;  Zanotelli, Vito R. T.;  Ali, H. Raza;  Mechera, Robert;  Soysal, Savas D.;  Moch, Holger;  Muenst, Simone;  Varga, Zsuzsanna;  Weber, Walter P.;  Bodenmiller, Bernd
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

Glycans have diverse physiological functions, ranging from energy storage and structural integrity to cell signalling and the regulation of intracellular processes(1). Although biomass-derived carbohydrates (such as d-glucose, d-xylose and d-galactose) are extracted on commercial scales, and serve as renewable chemical feedstocks and building blocks(2,3), there are hundreds of distinct monosaccharides that typically cannot be isolated from their natural sources and must instead be prepared through multistep chemical or enzymatic syntheses(4,5). These '  rare'  sugars feature prominently in bioactive natural products and pharmaceuticals, including antiviral, antibacterial, anticancer and cardiac drugs(6,7). Here we report the preparation of rare sugar isomers directly from biomass carbohydrates through site-selective epimerization reactions. Mechanistic studies establish that these reactions proceed under kinetic control, through sequential steps of hydrogen-atom abstraction and hydrogen-atom donation mediated by two distinct catalysts. This synthetic strategy provides concise and potentially extensive access to this valuable class of natural compounds.


Various rare sugars that cannot be isolated from natural sources are synthesized using light-driven epimerization, a process which may find application in other synthetic scenarios.


  
On-device lead sequestration for perovskite solar cells 期刊论文
NATURE, 2020, 578 (7796) : 555-+
作者:  Fruchart, Michel;  Zhou, Yujie;  Vitelli, Vincenzo
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Perovskite solar cells, as an emerging high-efficiency and low-cost photovoltaic technology(1-6), face obstacles on their way towards commercialization. Substantial improvements have been made to device stability(7-10), but potential issues with lead toxicity and leaching from devices remain relatively unexplored(11-16). The potential for lead leakage could be perceived as an environmental and public health risk when using perovskite solar cells in building-integrated photovoltaics(17-23). Here we present a chemical approach for on-device sequestration of more than 96 per cent of lead leakage caused by severe device damage. A coating of lead-absorbing material is applied to the front and back sides of the device stack. On the glass side of the front transparent conducting electrode, we use a transparent lead-absorbing molecular film containing phosphonic acid groups that bind strongly to lead. On the back (metal) electrode side, we place a polymer film blended with lead-chelating agents between the metal electrode and a standard photovoltaic packing film. The lead-absorbing films on both sides swell to absorb the lead, rather than dissolve, when subjected to water soaking, thus retaining structural integrity for easy collection of lead after damage.


Using lead-absorbing materials to coat the front and back of perovskite solar cells can prevent lead leaching from damaged devices, without affecting the device performance or long-term operation stability.