GSTDTAP

浏览/检索结果: 共98条,第1-10条 帮助

限定条件                        
已选(0)清除 条数/页:   排序方式:
Human influence on joint changes in temperature, rainfall and continental aridity 期刊论文
NATURE CLIMATE CHANGE, 2020
作者:  Bonfils, Celine J. W.;  Santer, Benjamin D.;  Fyfe, John C.;  Marvel, Kate;  Phillips, Thomas J.;  Zimmerman, Susan R. H.
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/09
Multiple drivers of the North Atlantic warming hole 期刊论文
NATURE CLIMATE CHANGE, 2020, 10 (7) : 667-+
作者:  Keil, Paul;  Mauritsen, Thorsten;  Jungclaus, Johann;  Hedemann, Christopher;  Olonscheck, Dirk;  Ghosh, Rohit
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/06
The downstream air pollution impacts of the transition from coal to natural gas in the United States (vol 3, pg 152, 2020) 期刊论文
NATURE SUSTAINABILITY, 2020, 3 (6) : 481-490
作者:  Burney, Jennifer A.
收藏  |  浏览/下载:7/0  |  提交时间:2020/06/09
Smart renewable electricity portfolios in West Africa 期刊论文
NATURE SUSTAINABILITY, 2020
作者:  Sterl, Sebastian;  Vanderkelen, Inne;  Chawanda, Celray James;  Russo, Daniel;  Brecha, Robert J.;  van Griensven, Ann;  van Lipzig, Nicole P. M.;  Thiery, Wim
收藏  |  浏览/下载:11/0  |  提交时间:2020/06/01
Influence of tectonics on global scale distribution of geological methane emissions 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Ciotoli, Giancarlo;  Procesi, Monia;  Etiope, Giuseppe;  Fracassi, Umberto;  Ventura, Guido
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13
Hydrological limits to carbon capture and storage 期刊论文
NATURE SUSTAINABILITY, 2020
作者:  Rosa, Lorenzo;  39;Odorico, Paolo
收藏  |  浏览/下载:10/0  |  提交时间:2020/05/13
The global cropland-sparing potential of high-yield farming 期刊论文
NATURE SUSTAINABILITY, 2020, 3 (4) : 281-289
作者:  Folberth, Christian;  Khabarov, Nikolay;  Balkovic, Juraj;  Skalsky, Rastislav;  Visconti, Piero;  Ciais, Philippe;  Janssens, Ivan A.;  Penuelas, Josep;  Obersteiner, Michael
收藏  |  浏览/下载:16/0  |  提交时间:2020/05/13
The role of soil carbon in natural climate solutions 期刊论文
NATURE SUSTAINABILITY, 2020, 3 (5) : 391-398
作者:  Bossio, D. A.;  Cook-Patton, S. C.;  Ellis, P. W.;  Fargione, J.;  Sanderman, J.;  Smith, P.;  Wood, S.;  Zomer, R. J.;  von Unger, M.;  Emmer, I. M.;  Griscom, B. W.
收藏  |  浏览/下载:12/0  |  提交时间:2020/05/13
Formation Criteria for Hyporheic Anoxic Microzones: Assessing Interactions of Hydraulics, Nutrients, and Biofilms 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (3)
作者:  Chowdhury, Sinchan Roy;  Zarnetske, Jay P.;  Phanikumar, Mantha S.;  Briggs, Martin A.;  Day-Lewis, Frederick;  Singha, Kamini
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/02
Preindustrial (CH4)-C-14 indicates greater anthropogenic fossil CH4 emissions 期刊论文
NATURE, 2020, 578 (7795) : 409-+
作者:  Keener, Megan;  Hunt, Camden;  Carroll, Timothy G.;  Kampel, Vladimir;  Dobrovetsky, Roman;  Hayton, Trevor W.;  Menard, Gabriel
收藏  |  浏览/下载:25/0  |  提交时间:2020/05/13

Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era(1). Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate(2,3). Carbon-14 in CH4 ((CH4)-C-14) can be used to distinguish between fossil (C-14-free) CH4 emissions and contemporaneous biogenic sources  however, poorly constrained direct (CH4)-C-14 emissions from nuclear reactors have complicated this approach since the middle of the 20th century(4,5). Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year)(2,3) between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate  emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year(6,7). Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago(8), but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core (CH4)-C-14 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)-an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions(9,10).


Isotopic evidence from ice cores indicates that preindustrial-era geological methane emissions were lower than previously thought, suggesting that present-day emissions of methane from fossil fuels are underestimated.