GSTDTAP

浏览/检索结果: 共61条,第1-10条 帮助

限定条件                            
已选(0)清除 条数/页:   排序方式:
Synthesis and properties of free-standing monolayer amorphous carbon 期刊论文
NATURE, 2020, 577 (7789) : 199-+
作者:  Toh, Chee-Tat;  Zhang, Hongji;  Lin, Junhao;  Mayorov, Alexander S.;  Wang, Yun-Peng;  Orofeo, Carlo M.;  Ferry, Darim Badur;  Andersen, Henrik;  Kakenov, Nurbek;  Guo, Zenglong;  Abidi, Irfan Haider;  Sims, Hunter;  Suenaga, Kazu;  Pantelides, Sokrates T.;  Ozyilmaz, Barbaros
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Bulk amorphous materials have been studied extensively and are widely used, yet their atomic arrangement remains an open issue. Although they are generally believed to be Zachariasen continuous random networks(1), recent experimental evidence favours the competing crystallite model in the case of amorphous silicon(2-4). In two-dimensional materials, however, the corresponding questions remain unanswered. Here we report the synthesis, by laser-assisted chemical vapour deposition(5), of centimetre-scale, free-standing, continuous and stable monolayer amorphous carbon, topologically distinct from disordered graphene. Unlike in bulk materials, the structure of monolayer amorphous carbon can be determined by atomic-resolution imaging. Extensive characterization by Raman and X-ray spectroscopy and transmission electron microscopy reveals the complete absence of long-range periodicity and a threefold-coordinated structure with a wide distribution of bond lengths, bond angles, and five-, six-, seven- and eight-member rings. The ring distribution is not a Zachariasen continuous random network, but resembles the competing (nano)crystallite model(6). We construct a corresponding model that enables density-functional-theory calculations of the properties of monolayer amorphous carbon, in accordance with observations. Direct measurements confirm that it is insulating, with resistivity values similar to those of boron nitride grown by chemical vapour deposition. Free-standing monolayer amorphous carbon is surprisingly stable and deforms to a high breaking strength, without crack propagation from the point of fracture. The excellent physical properties of this stable, free-standing monolayer amorphous carbon could prove useful for permeation and diffusion barriers in applications such as magnetic recording devices and flexible electronics.


  
Archimedean lattices emerge in template-directed eutectic solidification 期刊论文
NATURE, 2020, 577 (7790) : 355-+
作者:  Subbaraman, Nidhi;  Viglione, Giuliana
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

Template-directed assembly has been shown to yield a broad diversity of highly ordered mesostructures(1),(2), which in a few cases exhibit symmetries not present in the native material(3-5). However, this technique has not yet been applied to eutectic materials, which underpin many modern technologies ranging from high-performance turbine blades to solder alloys. Here we use directional solidification of a simple AgCl-KCl lamellar eutectic material within a pillar template to show that interactions of the material with the template lead to the emergence of a set of microstructures that are distinct from the eutectic'  s native lamellar structure and the template'  s hexagonal lattice structure. By modifying the solidification rate of this material-template system, trefoil, quatrefoil, cinquefoil and hexafoil mesostructures with submicrometre-size features are realized. Phase-field simulations suggest that these mesostructures appear owing to constraints imposed on diffusion by the hexagonally arrayed pillar template. We note that the trefoil and hexafoil patterns resemble Archimedean honeycomb and square-hexagonal-dodecagonal lattices(6), respectively. We also find that by using monolayer colloidal crystals as templates, a variety of eutectic mesostructures including trefoil and hexafoil are observed, the former resembling the Archimedean kagome lattice. Potential emerging applications for the structures provided by templated eutectics include non-reciprocal metasurfaces(7), magnetic spin-ice systems(8,9), and micro- and nano-lattices with enhanced mechanical properties(10,11).


  
Metallic glasses that harden under strain 期刊论文
NATURE, 2020, 578 (7796) : 521-522
作者:  Keller, Andreas J.;  Roth, Morgane M.;  Scanziani, Massimo
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

A process that reduces the risk of metallic glasses failing under stress.


Metallic glasses are much stronger than conventional metals, but form certain instabilities under stress that lead to fracture. A process known as rejuvenation has been shown to solve this problem.


  
THE SUPER-COOL MATERIALS THAT SEND HEAT TO SPACE 期刊论文
NATURE, 2020, 577 (7788) : 18-20
作者:  Lim, XiaoZhi
收藏  |  浏览/下载:0/0  |  提交时间:2020/07/03
Confinement of atomically defined metal halide sheets in a metal-organic framework 期刊论文
NATURE, 2020, 577 (7788) : 64-+
作者:  Gonzalez, Miguel I.;  Turkiewicz, Ari B.;  Darago, Lucy E.;  Oktawiec, Julia;  Bustillo, Karen;  Grandjean, Fernande;  Long, Gary J.;  Long, Jeffrey R.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

The size-dependent and shape-dependent characteristics that distinguish nanoscale materials from bulk solids arise from constraining the dimensionality of an inorganic structure(1-3). As a consequence, many studies have focused on rationally shaping these materials to influence and enhance their optical, electronic, magnetic and catalytic properties(4-6). Although a select number of stable clusters can typically be synthesized within the nanoscale regime for a specific composition, isolating clusters of a predetermined size and shape remains a challenge, especially for those derived from two-dimensional materials. Here we realize a multidentate coordination environment in a metal-organic framework to stabilize discrete inorganic clusters within a porous crystalline support. We show confined growth of atomically defined nickel(ii) bromide, nickel(ii) chloride, cobalt(ii) chloride and iron(ii) chloride sheets through the peripheral coordination of six chelating bipyridine linkers. Notably, confinement within the framework defines the structure and composition of these sheets and facilitates their precise characterization by crystallography. Each metal(ii) halide sheet represents a fragment excised from a single layer of the bulk solid structure, and structures obtained at different precursor loadings enable observation of successive stages of sheet assembly. Finally, the isolated sheets exhibit magnetic behaviours distinct from those of the bulk metal halides, including the isolation of ferromagnetically coupled large-spin ground states through the elimination of long-range, interlayer magnetic ordering. Overall, these results demonstrate that the pore environment of a metal-organic framework can be designed to afford precise control over the size, structure and spatial arrangement of inorganic clusters.


  
Engineering covalently bonded 2D layered materials by self-intercalation 期刊论文
NATURE, 2020, 581 (7807) : 171-+
作者:  Shang, Jian;  Ye, Gang;  Shi, Ke;  Wan, Yushun;  Luo, Chuming;  Aihara, Hideki;  Geng, Qibin;  Auerbach, Ashley;  Li, Fang
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Two-dimensional (2D) materials(1-5) offer a unique platform from which to explore the physics of topology and many-body phenomena. New properties can be generated by filling the van der Waals gap of 2D materials with intercalants(6,7)  however, post-growth intercalation has usually been limited to alkali metals(8-10). Here we show that the self-intercalation of native atoms(11,12) into bilayer transition metal dichalcogenides during growth generates a class of ultrathin, covalently bonded materials, which we name ic-2D. The stoichiometry of these materials is defined by periodic occupancy patterns of the octahedral vacancy sites in the van der Waals gap, and their properties can be tuned by varying the coverage and the spatial arrangement of the filled sites(7,13). By performing growth under high metal chemical potential(14,15) we can access a range of tantalum-intercalated TaS(Se)(y), including 25% Ta-intercalated Ta9S16, 33.3% Ta-intercalated Ta7S12, 50% Ta-intercalated Ta10S16, 66.7% Ta-intercalated Ta8Se12 (which forms a Kagome lattice) and 100% Ta-intercalated Ta9Se12. Ferromagnetic order was detected in some of these intercalated phases. We also demonstrate that self-intercalated V11S16, In11Se16 and FexTey can be grown under metal-rich conditions. Our work establishes self-intercalation as an approach through which to grow a new class of 2D materials with stoichiometry- or composition-dependent properties.


  
Enhanced ferroelectricity in ultrathin films grown directly on silicon 期刊论文
NATURE, 2020, 580 (7804) : 478-+
作者:  Arnold, Fabian M.;  Weber, Miriam S.;  Gonda, Imre;  Gallenito, Marc J.;  Adenau, Sophia;  Egloff, Pascal;  Zimmermann, Iwan;  Hutter, Cedric A. J.;  Huerlimann, Lea M.;  Peters, Eike E.;  Piel, Joern;  Meloni, Gabriele;  Medalia, Ohad;  Seeger, Markus A.
收藏  |  浏览/下载:49/0  |  提交时间:2020/07/03

Ultrathin ferroelectric materials could potentially enable low-power perovskite ferroelectric tetragonality logic and nonvolatile memories(1,2). As ferroelectric materials are made thinner, however, the ferroelectricity is usually suppressed. Size effects in ferroelectrics have been thoroughly investigated in perovskite oxides-the archetypal ferroelectric system(3). Perovskites, however, have so far proved unsuitable for thickness scaling and integration with modern semiconductor processes(4). Here we report ferroelectricity in ultrathin doped hafnium oxide (HfO2), a fluorite-structure oxide grown by atomic layer deposition on silicon. We demonstrate the persistence of inversion symmetry breaking and spontaneous, switchable polarization down to a thickness of one nanometre. Our results indicate not only the absence of a ferroelectric critical thickness but also enhanced polar distortions as film thickness is reduced, unlike in perovskite ferroelectrics. This approach to enhancing ferroelectricity in ultrathin layers could provide a route towards polarization-driven memories and ferroelectric-based advanced transistors. This work shifts the search for the fundamental limits of ferroelectricity to simpler transition-metal oxide systems-that is, from perovskite-derived complex oxides to fluorite-structure binary oxides-in which '  reverse'  size effects counterintuitively stabilize polar symmetry in the ultrathin regime.


Enhanced switchable ferroelectric polarization is achieved in doped hafnium oxide films grown directly onto silicon using low-temperature atomic layer deposition, even at thicknesses of just one nanometre.


  
Short-range order and its impact on the CrCoNi medium-entropy alloy 期刊论文
NATURE, 2020, 581 (7808) : 283-+
作者:  Tan, Hwei-Ee;  Sisti, Alexander C.;  Jin, Hao;  Vignovich, Martin;  Villavicencio, Miguel;  Tsang, Katherine S.;  Goffer, Yossef;  Zuker, Charles S.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Traditional metallic alloys are mixtures of elements in which the atoms of minority species tend to be distributed randomly if they are below their solubility limit, or to form secondary phases if they are above it. The concept of multiple-principal-element alloys has recently expanded this view, as these materials are single-phase solid solutions of generally equiatomic mixtures of metallic elements. This group of materials has received much interest owing to their enhanced mechanical properties(1-5). They are usually called medium-entropy alloys in ternary systems and high-entropy alloys in quaternary or quinary systems, alluding to their high degree of configurational entropy. However, the question has remained as to how random these solid solutions actually are, with the influence of short-range order being suggested in computational simulations but not seen experimentally(6,7). Here we report the observation, using energy-filtered transmission electron microscopy, of structural features attributable to short-range order in the CrCoNi medium-entropy alloy. Increasing amounts of such order give rise to both higher stacking-fault energy and hardness. These findings suggest that the degree of local ordering at the nanometre scale can be tailored through thermomechanical processing, providing a new avenue for tuning the mechanical properties of medium- and high-entropy alloys.


Metal alloys consisting of three or more major elemental components show enhanced mechanical properties, which are now shown to be correlated with short-range order observed with electron microscopy.


  
Boundaries transformed in pure metals 期刊论文
NATURE, 2020, 579 (7799) : 350-351
作者:  Ledford, Heidi
收藏  |  浏览/下载:3/0  |  提交时间:2020/07/03

Interfaces between the tiny crystal grains that make up solid copper have been shown to change from one ordered phase to another, independently of the phase adopted by the crystals, opening up prospects for materials development.


Polymorphs of grain boundaries in copper visualized and modelled.


  
Non-volatile electric control of spin-charge conversion in a SrTiO3 Rashba system 期刊论文
NATURE, 2020, 580 (7804) : 483-+
作者:  Collombet, Samuel;  Ranisavljevic, Noemie;  Nagano, Takashi;  Varnai, Csilla;  Shisode, Tarak;  Leung, Wing;  Piolot, Tristan;  Galupa, Rafael;  Borensztein, Maud;  Servant, Nicolas;  Fraser, Peter;  Ancelin, Katia;  Heard, Edith
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

The polarization direction of a ferroelectric-like state can be used to control the conversion of spin currents into charge currents at the surface of strontium titanate, a non-magnetic oxide.


After 50 years of development, the technology of today'  s electronics is approaching its physical limits, with feature sizes smaller than 10 nanometres. It is also becoming clear that the ever-increasing power consumption of information and communication systems(1) needs to be contained. These two factors require the introduction of non-traditional materials and state variables. As recently highlighted(2), the remanence associated with collective switching in ferroic systems is an appealing way to reduce power consumption. A promising approach is spintronics, which relies on ferromagnets to provide non-volatility and to generate and detect spin currents(3). However, magnetization reversal by spin transfer torques(4) is a power-consuming process. This is driving research on multiferroics to achieve low-power electric-field control of magnetization(5), but practical materials are scarce and magnetoelectric switching remains difficult to control. Here we demonstrate an alternative strategy to achieve low-power spin detection, in a non-magnetic system. We harness the electric-field-induced ferroelectric-like state of strontium titanate (SrTiO3)(6-9) to manipulate the spin-orbit properties(10) of a two-dimensional electron gas(11), and efficiently convert spin currents into positive or negative charge currents, depending on the polarization direction. This non-volatile effect opens the way to the electric-field control of spin currents and to ultralow-power spintronics, in which non-volatility would be provided by ferroelectricity rather than by ferromagnetism.