GSTDTAP
项目编号NE/S01036X/1
Seismic imaging of lithospheric flexure along the Hawaiian-Emperor Seamount Chain and its implications for plate mechanics and mantle dynamics
Anthony Brian Watts
主持机构University of Oxford
项目开始年2019
2019-10-01
项目结束日期2021-09-30
资助机构UK-NERC
项目类别Research Grant
项目经费222400(GBP)
国家英国
语种英语
英文摘要The Hawaiian-Emperor Seamount Chain is arguably the world's best known example of hotspot magmatism, where volcanic activity and earthquakes occur far from plate boundaries. Nevertheless, questions remain about the fundamental processes that control such magmatism and seismicity along the 5800-km-long, 0-80 Ma, chain, in part because the volume and compositions of frozen magma that has been added to the surface and base of Pacific oceanic crust is too poorly known. The aim of this study is to use 'state of the art' marine seismic imaging techniques to constrain the thickness and composition of the magmatic material created by the Hawaiian hotspot, how it varies along the seamount chain, and how the Pacific oceanic plate has deformed in response to volcano loading. This study, which is a collaborative one with US scientists at Lamont-Doherty Earth Observatory, will utilize reprocessed seismic reflection and refraction data acquired on previous research cruises (e.g. R/V Robert D. Conrad C2308, R/V Thomas Washington Roundabout 2, and R/V Maurice Ewing EW9801), together with a new data set that will be acquired onboard R/V Marcus G. Langseth during late summer, 2018 and early summer, 2019. The Langseth cruises, which have been funded by the National Science Foundation (Marine Geology and Geophysics Division), will acquire deep penetration seismic reflection data using a 15 km long streamer and a large tuned airgun array and wide-angle reflection/refraction data using 70 Ocean Bottom Seismometers spaced at 15 km intervals along four 500-km-long transects of the chain. The transect locations have been carefully chosen to represent variations in the timing of magma emplacement and volume flux, the age of oceanic lithosphere at the time of loading and the presence/absence of a mid-plate topographic swell, and are sufficiently long to capture the response of the lithosphere to volcano loading out to the flexural bulge. The reprocessed and processed seismic reflection profiles and velocity models created from wide-angle seismic data will constrain the volume and distribution of magmatic addition to the surface and base of the crust, the nature of the stratigraphic fill in the flanking flexural moats and the relative role of faulting within the flexed volcanic edifice and underlying oceanic plate. The seismic constraints will be integrated with swath bathymetry and potential field data, compared to other marine geophysical studies of hotspot magmatism and used as the basis for thermal and mechanical modeling in order to gain fundamental insights into crust and lithosphere rheology and stress state and to inform potential geohazards along the chain such as large-scale slope failures, fault slip and tsunamigenic earthquakes. The study proposed here is central to NERC's strategy especially as it involves discovery science that impacts on how planet Earth works, how it deforms in response to surface and sub-surface loads and how it might deform in the future.
URL查看原文
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/87617
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Anthony Brian Watts.Seismic imaging of lithospheric flexure along the Hawaiian-Emperor Seamount Chain and its implications for plate mechanics and mantle dynamics.2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Anthony Brian Watts]的文章
百度学术
百度学术中相似的文章
[Anthony Brian Watts]的文章
必应学术
必应学术中相似的文章
[Anthony Brian Watts]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。