GSTDTAP
项目编号NE/R014086/1
How do faults grow above dykes?
Craig Magee
主持机构University of Leeds
项目开始年2018
2018-10-01
项目结束日期2023-09-30
资助机构UK-NERC
项目类别Fellowship
项目经费513180(GBP)
国家英国
语种英语
英文摘要Magma travels through Earth's crust to the surface, where it erupts at volcanoes, along vertical paths that have a sheet-like shape (dykes). When dykes are injected, either vertically or laterally, they fracture and push apart the surrounding rock, producing small earthquakes. Continued dyke injection causes fractures to develop into faults, where rock on one side of the crack starts to slip passed the other. Fault slip can pull down and extend or push up rock directly above the dyke, sometimes deforming Earth's surface. Monitoring earthquakes and ground deformation generated by dyke-induced faults can therefore tell us where dykes are injecting, providing us warning of possible eruptions. Studies of injecting dykes and dyke-induced faulting in Ethiopia show that they can also aid continent fragmentation, although these structures have yet to be found along the margins of continents where break-up once occurred. In addition, satellite images of planets (e.g. Mars) indicate that dyke-induced faults deform their surface. It is thus clear that dyke injection and dyke-induced faulting plays and has played a major role in shaping the volcanic and/or tectonic history and surface morphology of Earth and other planets.

To understand how dykes and dyke-induced faults control different volcanic, tectonic, and planetary processes, we first need to identify how faults grow above dykes in three-dimensions. However, seismicity and ground deformation related to active dyke injection, which cannot directly be observed, are rarely captured using geophysical techniques and only a small part of a dyke-induced fault can be studied at the surface. Conversely, where ancient dykes are exposed at Earth's surface, erosion of the overlying rocks has often removed dyke-induced faults and the earthquakes that accompanied dyke injection have long-since ceased. To circumvent these problems, many computer and sandbox models have been developed to try and replicate fault growth above dykes. These models have produced numerous hypotheses for dyke-induced fault growth, but without examination of the 3D structure of natural dykes and dyke-induced faults, they cannot be tested. Therefore, despite over 40 years of research, we still do not understand the true 3D structure or evolution of dykes and dyke-induced faults.

I have recently identified the first series of ancient dykes and dyke-induced faults to be observed in seismic reflection data, which provide 3D X-ray like images of Earth's subsurface, from the margins of a continent (NW Australia). These data present a unique and exciting opportunity to study the 3D structure of dykes and dyke-induced faults. By measuring offset of sedimentary rocks across faults, which record how slip accumulated, I will be able to test previous model predictions of dyke-induced fault growth. Because the processes driving dyke injection and faulting offshore of NW Australia have long-since ceased, I will also study active dyke-induced faults breaking the surface in Ethiopia. I will specifically use high-resolution, aerial Light Detection and Ranging (LiDAR) images collected in 2009 and 2012 to identify how faults grew and interacted during a single dyke injection event in 2010. Results from these analyses will be used to design of new analogue models that will replicate dyke injection and dyke-induced faulting in 3D, under different tectonic settings (e.g. extension), and using more realistic rock/magma characteristics. This cross-disciplinary research will reveal how faults grow above dykes, raising important implications for our understanding of: (i) how we can use dyke-induced fault activity to assess potential eruptions; (ii) the role dykes and dyke-induced faults play in the break-up of continents; (iii) whether dykes and dyke-induced faults influence the evolution of continental margins, which host most of the world's oil and gas; and (iv) dyke and fault structure beneath the surface of other planets (e.g. Mars).
来源学科分类Natural Environment Research
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/87296
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Craig Magee.How do faults grow above dykes?.2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Craig Magee]的文章
百度学术
百度学术中相似的文章
[Craig Magee]的文章
必应学术
必应学术中相似的文章
[Craig Magee]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。