GSTDTAP
项目编号NE/S008853/1
Hikurangi Trough late Pleistocene palaeoceanography, biostratigraphy and Cretaceous Ocean Anoxia Events (OAEs)
Tracy Lousie Aze
主持机构University of Leeds
项目开始年2018
2018-05-14
项目结束日期2018-11-13
资助机构UK-NERC
项目类别Research Grant
项目经费23897(GBP)
国家英国
语种英语
英文摘要Part I:

The regions of the world's oceans, which border Antarctica, are critical for controlling the Earth's climate. Firstly, the largely unhindered transit of ocean currents (the Antarctic circumpolar current, ACC) that circle and Antarctic continent enables the continued maintenance of its huge continental ice sheets. Secondly, a permanent thermal boundary between water masses extends to the ocean surface within the Subtropical Convergence (STC) in this region. Consequently, this is a region of high biological productivity due to the mixing of micronutrient-rich subtropical waters (STW) with macronutrient-rich subantarctic waters (SAW). As such the STC is a highly important sink for atmospheric CO2 due to high levels of primary productivity.

This region is also influenced by the presence and extent of the Western Antarctic Ice Sheet (WAIS). The extent of this ice sheet has been shown to alter the latitudinal positioning of the Southern Hemisphere STC by up to 7 degrees from stadial-interstadial cycles of the Late Pleistocene epoch (last 800 ka), and may subsequently partially decouple global climate from atmospheric partial pressure of carbon dioxide. Previous studies highlighting the Late Pleistocene evolution of sea surface and intermediate waters within the southwest Pacific have indicated complex behaviour of the subtropical front (STF) throughout this interval.

Utilizing samples from site U1520D from within the Hikurangi Trough (Expedition 375), we propose a high resolution (<1 kyr) study of late Pleistocene foraminifera to better constrain the regional paleoceanography over the last 130 ka, and how this relates to climate forcing. We aim to better understand the STC through paired measurements of oxygen isotopes and Mg/Ca trace element ratios of both planktonic (Globigerina bulloides) and benthic foraminifera (Uvigerina peregrina). G. bulloides is a symbiont-barren, opportunistic species which often dominates the foraminifer fauna, and sediment assemblage of the ocean floor, and is therefore an important source of geochemical information for palaeoceanographic studies. U. peregrina is an infaunal benthic species, which has also been used extensively to calculate intermediate water properties throughout the Pliocene-Pleistocene. These stable isotope and trace metal records are required to assess the scale and timing of surface and intermediate water temperature, and salinity across the STC. This data will subsequently contribute to our knowledge of the extent and influence of the WAIS and meridional gradient variability response to orbital forcing during a critical period of cryosphere development.

Part II:

The Cenomanian-Turonian boundary (CTB) can be correlated globally in pelagic carbonate facies by a major turnover in fossil groups, and by a positive carbon isotope excursion, typically associated with dark marls or shales enriched in organic carbon. The dramatic changes within lithology are attributed to increased rates of oceanic-turnover and upwelling of nutrient-rich deep water masses, and high surface-water productivity.
Oxygen depletion and eutrophication of the Earth's oceans has been associated with warming in the geological past, and current observations show expansion of modern oxygen minimum zones. Clarifying the nature and mechanism of these oceanic anoxia events (OAEs), and there effect upon life is imperative to our understanding the possible implications that anthropogenic climate forcing may have upon the biodiversity of the modern ocean.
We plan to utilize samples sourced from IODP Expedition 375 Hole 1520C, within the Hikurangi Trough, where an expanded section is been identified detailing the Cenomanian-Turonian boundary. Through foraminiferal faunal analysis and paired measurements of oxygen and carbon isotopes we aim to elucidate the nature of the CTB within the Hikurangi Trough, which represents a rare, well-preserved high-latitude example of a Cretaceous OAEs.
来源学科分类Natural Environment Research
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/87118
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Tracy Lousie Aze.Hikurangi Trough late Pleistocene palaeoceanography, biostratigraphy and Cretaceous Ocean Anoxia Events (OAEs).2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tracy Lousie Aze]的文章
百度学术
百度学术中相似的文章
[Tracy Lousie Aze]的文章
必应学术
必应学术中相似的文章
[Tracy Lousie Aze]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。