GSTDTAP
项目编号NE/R012342/1
NSFDEB-NERC:Tropical deadwood carbon fluxes: Improving carbon models by incorporating termites and microbes
Paul Eggleton
主持机构The Natural History Museum
项目开始年2017
2017-10-09
项目结束日期2022-10-08
资助机构UK-NERC
项目类别Research Grant
国家英国
语种英语
英文摘要Objectives of this project are to measure rates of tropical deadwood (coarse woody debris;
CWD) turnover and identify mechanisms that determine fates of CWD carbon (C) under current
and future climates. Woody plants are the largest aboveground terrestrial biotic C store,
and CWD biomass is likely substantial but poorly estimated. Much of our knowledge of turnover
comes from temperate systems, where CWD is thought to be slow cycling. Less is known about
tropical CWD pools and turnover, despite large living tree biomass. Due to differences in
climate (warmer temperatures and sometimes greater precipitation), wood construction, and
loss pathways (increasing role of termites), it is likely that CWD is dynamic in tropical
systems. This project combines field, molecular, and modeling approaches in tropical Australia,
where termites and fungi are key agents of wood turnover. A continuous belt of forest from
rainforest to savanna with existing long-term data and infrastructure makes it an ideal location.
Three questions will be addressed: Q1. What controls rates of CWD C turnover? Turnover rates
will be determined by termite and fungal activity, which are dependent on climate and wood
construction. Warmer and wetter conditions should increase turnover, but termites should increase
turnover relatively more in dry conditions as they have water conservation strategies. Dense
highly lignified wood should decay more slowly. Q2. What controls fates of C from CWD? C fates
(CO2, CH4, organic residues) will depend on stage of decay and functional composition of termite
and microbial communities. Later stages of decay, increased methanogens, decreased methanotrophs
and changes in termite species should result in greater CH4:CO2. Greater organic residue formation
will occur when C loss is via termites. Q3. How do mechanisms of wood turnover scale up to
affect ecosystem-level C fluxes under climate change? Climate warming in Northern Australia
will increase turnover rates and alter C fates of wood. To date, CWD is poorly parameterized
in Earth system models (e.g., CWD decays only via physical fragmentation). Field data from
Q1 and Q2 will be used to drive new predictive models of wood turnover and greenhouse gas
(GHG) production under climate change. To test Q1 and determine relative saprobic microbe
and termite decay rates in response to precipitation variation, blocks of a novel substrate
(Pinus radiata) known to attract termites will be placed at 6 sites (Rainfall gradient experiment).
Blocks will be enclosed in fine-mesh with or without holes manipulating termite access; blocks
will be harvested at end of wet and dry seasons for 4 years. To determine influence of wood
construction on decay, replicate logs of 10 species/site similarly enclosed will be placed
at rainforest and savannah sites (Common garden experiment). Logs will be harvested at end
of 2 wet and 2 dry seasons. For logs/blocks, initial and final mass, density and chemistry
will be measured. Local weather stations will provide climate data. To test Q2, wood subsamples
and termites in wood will be collected to determine termite community, microbial community
and functional gene composition, and organic residue formation. CO2 and CH4 will be measured
for harvested logs/blocks. As some termites live in mounds, experimental mounds (Termite mesocosm
experiment) will be established and mound diel CO2 and CH4 fluxes will be measured monthly
for 1 yr. To test Q3, field data will be incorporated into woodCLM, an ecosystem model derived
from the Community Land Model. Results from the modified and original models will be compared.
Using woodCLM, wood dynamics and GHG emissions will be simulated under future climate scenarios
来源学科分类Natural Environment Research
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/86840
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Paul Eggleton.NSFDEB-NERC:Tropical deadwood carbon fluxes: Improving carbon models by incorporating termites and microbes.2017.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Paul Eggleton]的文章
百度学术
百度学术中相似的文章
[Paul Eggleton]的文章
必应学术
必应学术中相似的文章
[Paul Eggleton]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。