GSTDTAP
项目编号NE/N017838/1
Using an Antarctic fungus as a wintertime biopesticide
[unavailable]
主持机构CAB International
项目开始年2016
2016-04-01
项目结束日期2017-03-31
资助机构UK-NERC
项目类别Research Grant
国家英国
语种英语
英文摘要The problem:
The black vine weevil (BVW) is causing havoc for UK soft fruit growers, with estimated losses for strawberry and blueberry alone of £10 million per annum. Its larvae overwinter in the soil and cause tremendous damage to plant roots, ultimately killing the plant. The damage is so bad in strawberries that new plants are now planted yearly. With the decline in available chemical pesticides, the range of suitable products for BVW control is becoming a cause for concern.

The large pine weevil (PW) is the most serious pest of conifer restoration in the UK and Ireland and is a priority pest of the Forestry Commission. In the absence of control measures some 50% of young trees could be lost across the UK. Figures in 2005 put the potential loss to the British forestry industry at £12 million per year (Torr et al. 2005 Forestry applications, in: Nematodes as biological control agents, CABI Publishing, Wallingford, pp. 281-293). Adult PW overwinter in leaf litter and the upper soil layers and this is the life-stage that a winter-time biopesticide would target.

How are we addressing the problem?
CABI, a not-for-profit research organisation that promotes sustainable agriculture worldwide, and BAS, a polar research institute that applies its expertise globally wherever it can add value, have found a potential answer to protecting British soft fruits and forests by developing a new biopesticide, based on a fungus sourced from the Antarctic. Previous projects have demonstrated, in the laboratory, that the fungus thrives at British winter temperatures (0-10 C) and has insect-killing activity. CABI and BAS are developing a new product to kill BVW and PW while they overwinter in the soil. Current commercial biopesticides for weevils (the majority of which are nematodes) work poorly at temperatures below 10 C, hence over the winter months when these pests are relatively immobile, and therefore at a 'perfect' time to be hit, there are few suitable means of doing s This project plans to apply the Antarctic fungus to soils in late autumn when soil temperatures start to decline. The fungus will then start to grow as other natural microorganisms will be dormant. It is envisaged that as the fungus grows through the soil it will encounter BVW/PW and kill them. In spring, when native microorganisms exit dormancy, we expect the Antarctic fungus to be outcompeted. In this project soils from around the UK will be collected by AlphaBioControl Ltd, a commercial company promoting the use of sustainable crop protection products. CABI will then examine if the Antarctic fungus can kill BVW and PW in the soils collected. CABI will also determine if the fungus harms earthworms. BAS, who collected the fungus from Antarctica, will carry out ecological studies to determine how the fungus will grow and interact with other microorganisms in UK soils under different temperatures. The outputs of this project will be necessary for obtaining regulatory approval and to provide sufficient evidence to enable the project team, together with a commercial partner such as AlphaBioControl Ltd, to apply for Innovate UK or other industry-led funding for further commercialisation.

Benefit to end-users:
Biopesticide producers will benefit from the opportunity to bring a new product to market which fills a gap in temperate agri-, horti- and silviculture. Producers of soft fruit will benefit by reduced damage to plants. In particular, strawberry growers may not need to re-plant annually, saving labour and material costs, and here will be benefits from a reduced need for emergency chemical intervention. Forestry will benefit as they will have another option to control PW; indeed possibly the only option by 2020, as the chemical pesticides presently in use are being phased out. Furthermore, forestry will not need to restock as many young trees on a yearly basis, if our product is successful.
来源学科分类Natural Environment Research
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/86083
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
[unavailable].Using an Antarctic fungus as a wintertime biopesticide.2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[[unavailable]]的文章
百度学术
百度学术中相似的文章
[[unavailable]]的文章
必应学术
必应学术中相似的文章
[[unavailable]]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。