GSTDTAP
项目编号NE/L011867/2
The wild mammalian microbiome
[unavailable]
主持机构Royal Veterinary College
项目开始年2015
2015-10-01
项目结束日期2019-08-31
资助机构UK-NERC
项目类别Fellowship
国家英国
语种英语
英文摘要The vertebrate gut teems with a vast, diverse community of bacteria that outnumber the cells of their host by at least an order of magnitude, the so-called gut microbiota. Recent advances in molecular biology have revolutionised research into these bacterial communities, and demonstrated their pervasive effects on host biology, health and disease. At the same time, their tremendous variability has come to light - they vary enormously across species, among individuals, and within individuals over time. Such variation demands an explanation, yet our current understanding of the ecological and evolutionary processes responsible remains limited. A key obstacle in this respect is that so far, microbiota research has focused heavily on just two model organisms - humans and laboratory mice, leaving a gap in knowledge about what shapes gut microbial communities in natural vertebrate populations. I outline a research programme that addresses this need, by developing wild small mammals as a novel system for microbiota research, and using them to address several key questions about which we currently know rather little: (1) Why do individuals within a single population show distinct gut microbial profiles, and what processes drive changes in these communities over time within individuals? (2) How exactly are gut microbes and other gut-dwelling organisms transmitted among hosts within a population - do their social interactions or shared use of space play a significant role in this process? (3) What ecological and evolutionary processes underlie variation across species in their gut microbiota?

To address the first two questions, I will use a common British rodent - the wood mouse - as a model study system. Wood mice are ideal for this purpose: in the wild, a large number of individuals can be uniquely marked and monitored throughout their lives in a relatively small area, with repeated sampling of their gut microbiota and fine-scale characterisation of their local habitat. Also, manipulative experiments both in the wild and in captivity are possible with this species. To address the first question, I will use a combination of detailed field observations and controlled experiments to build a comprehensive picture of the processes shaping within-population variation in gut microbial communities. Observational data on key hypothesized factors including genetic relatedness, diet, habitat, gut parasites, age and reproductive status will allow me to estimate their relative contribution to microbiota variation within and among individuals. I will also use a large-scale drug treatment experiment in wild mice to directly test how the presence of another key group of gut inhabitants - parasitic helminths, affects the microbiota. Finally, I will perform a "diet shift" experiment in captive wood mice, to test how changes in natural food groups shape the gut microbiota. To address the second question, I will use a novel 'social network' based approach in the same wild wood mouse population used above, to examine how animal social contacts and space use drive the transmission of gut microbes and gut parasites. Finally, to answer the third question, I will perform a multi-species study using wild small mammals (mice, voles and shrews) that co-occur across several different habitat types in Europe. This study will test for the first time whether a host's evolutionary heritage or their current environmental conditions (habitat and diet), dominate in shaping their microbiota.

This research will provide fundamental insight into the ecological and evolutionary processes affecting the mammalian gut microbiota, and thereby advance our knowledge about how and why these communities, which are so critical to host health, vary in nature. It will also fill an important gap in knowledge about how gut-dwelling organisms are transmitted among animals, with relevance to the control of infectious disease.
来源学科分类Natural Environment Research
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/85820
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
[unavailable].The wild mammalian microbiome.2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[[unavailable]]的文章
百度学术
百度学术中相似的文章
[[unavailable]]的文章
必应学术
必应学术中相似的文章
[[unavailable]]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。