GSTDTAP
项目编号NE/M021378/1
Towards successfully realising the impact of the chip-based phospholipid on mercury (Hg) device as a toxicity sensing system
[unavailable]
主持机构University of Leeds
项目开始年2015
2015-06-08
项目结束日期2016-04-07
资助机构UK-NERC
项目类别Research Grant
国家英国
语种英语
英文摘要Keywords: membrane-based sensor; membrane permeability and damage; cross-validation/demonstration; technical development; staff exchange; project workshop

This project can be divided into the following four categories of activity with the ultimate aim of transferring an interesting and unique technology to appropriate end users;SEAC, Unilever and ALcontrol Ltd and co-workers; IBMT, Fraunhofer:-

(i) Cross-validation/demonstration. The University of Leeds has developed a unique and elegant biosensor which is sensitive to compounds and particles which damage and/or are permeable in biological membranes a property defined as biomembrane activity. The aim of this task therefore is to evaluate exactly how the Leeds biosensor assay compares with those currently employed by the end users in achieving the same or similar functions. This activity will provide a clear definition of the respective advantages and disadvantages of both the Leeds and the end users' techniques. This is necessary since although the Leeds biosensor is at prototype stage, it is essential that its performance is compared with other systems in their detection of the biomembrane activity of a common group of compounds. Particular attention will be paid to the similarity and differences in the parameters being measured by each technique. The outcome of this activity is, (a) to enable end users to determine whether it is advantageous to add this technology to their measuring systems and, (b) to enable Leeds to adapt their technology to specified applications. The impact is an increasing confidence in and acceptance by the user community of the capabilities of the Leeds device.

2. Technical development. The technical development will take the Leeds biosensor from the prototype stage to a routine sensing device which can be operated by skilled technicians. This improvement will include streamlining the data analysis and extending the device from one module to three or more modules which will will enable it be used in a high-throughput automated configuration. The outcome of this activity therefore is to transform the Leeds biosensor system from a lab prototype into one which can be used by skilled technicians in the end user laboratories in a form which is specified by them. The impact is an increasingly robust biosensing device where a perceived risk in its application has been decreased allowing a more ready take up by end users.

3. Exchanges and placements. This objective will allow (a) end user scientists to operate and become completely familiar with, the Leeds biosensor and (b) scientists from Leeds to fully evaluate the end-users' methods and requirements in order to assess exactly how the end user technology fits in with the Leeds biosensor technology. The outcome of this activity is to transfer the Leeds technology to end users as a complimentary system to their own. Currently the Leeds biosensor has not been adopted by an end user. This objective will enable the Leeds biosensor to have a direct user application which not only expands the user's facility but also validates and consolidates the Leeds biosensor's applicability. The impact is a transfer of the technology to the end user.

4. Facilitated dissemination. This objective will enable the Leeds scientists to communicate the project progress to the end users and for the end users to comment on the deliverables. An end of project workshop will be held where the project's final report will be presented. The open nature of the workshop with outside participants will ensure other potential end users can assess Nelson's technology with increasing confidence and judge whether it is suitable for their needs so expanding its remit. The outcome and impact of this activity is to facilitate further knowledge transfer of the Leeds technology and its take up by other commercial users in additional to SEAC and ALcontrol.
来源学科分类Natural Environment Research
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/85670
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
[unavailable].Towards successfully realising the impact of the chip-based phospholipid on mercury (Hg) device as a toxicity sensing system.2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[[unavailable]]的文章
百度学术
百度学术中相似的文章
[[unavailable]]的文章
必应学术
必应学术中相似的文章
[[unavailable]]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。