GSTDTAP
项目编号1805569
Analysis to evaluate and improve model performance in the Central Arctic: Unique perspectives from autonomous platforms during MOSAiC
Gijs de Boer
主持机构University of Colorado at Boulder
项目开始年2018
2018-10-01
项目结束日期2022-09-30
资助机构US-NSF
项目类别Standard Grant
项目经费1673672(USD)
国家美国
语种英语
英文摘要This study will use an emerging technology, unmanned aircraft systems, to collect measurements with the goal of improving weather and climate models of the Arctic system. It is part of the international MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) program, an extensive field effort to freeze an icebreaker into sea ice for an entire year to serve as a research platform for a comprehensive study of the atmosphere, ocean and ice system in the high Arctic. The unique and potentially transformative aspect of this project is that unmanned aircraft collect data at small spatial and temporal scales, providing new information about variability in temperature, humidity, and winds. In addition, direct measurements of these variables over breaks in the sea ice have been very limited to date. Therefore, this study will address a significant source of error in our current ability to forecast how energy is transferred between the atmosphere and underlying ice and sea surface. Together with information from collaborating scientists participating in the MOSAiC field effort, the investigators will evaluate a series of hypotheses related to the performance of model simulations of key processes over the central Arctic Ocean. The investigators will also give pubic lectures at schools and other venues, capitalizing on interest and excitement in use of new technology though use of videos and photos of the unmanned aircraft systems. They will support training for early career scientists by involving graduate students and postdoctoral scientists.

The investigators will deploy an unmanned aircraft system to measure atmospheric temperature, winds, and humidity, as well as surface albedo. Flights will take place from mid-winter (February) through late summer (August) to capture variable conditions in both the atmosphere and sea ice surface and will include routine profiling of the lower atmosphere, spatial mapping of thermodynamic quantities and surface albedo, and mapping of the lower atmospheric structure over leads. This data will be evaluated with measurements of the atmosphere, ocean and ice collected by other scientists as part of the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) project to address hypotheses related to the performance of modeling tools in simulating key processes over the central Arctic Ocean. These include questions about sub-grid scale variability of atmospheric and surface parameters and its influence on model-simulated surface energy budget; the influence of leads in the sea ice on energy transfer from the ocean to the atmosphere and how models represent this transfer; and the importance of vertical resolution in simulation of the Arctic atmosphere and its impact on the simulation of clouds and the surface energy budget. The investigators will compare observations from unmanned aerial systems to a variety of simulations, ranging from global products to fully-coupled regional simulations completed using the Regional Arctic System Model (RASM) to detailed single-column and 2D modeling at high resolution.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/73568
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Gijs de Boer.Analysis to evaluate and improve model performance in the Central Arctic: Unique perspectives from autonomous platforms during MOSAiC.2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gijs de Boer]的文章
百度学术
百度学术中相似的文章
[Gijs de Boer]的文章
必应学术
必应学术中相似的文章
[Gijs de Boer]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。