GSTDTAP
项目编号1818792
Collaborative Research: Understanding the Origin of the mid-lithospheric discontinuity within a stable continent from a combined geophysics-mineral physics approach
Shun-ichiro Karato
主持机构Yale University
项目开始年2018
2018-09-01
项目结束日期2021-08-31
资助机构US-NSF
项目类别Standard Grant
项目经费434868(USD)
国家美国
语种英语
英文摘要In stable continents worldwide, a substantial velocity decrease has been detected at about 100 km depth (varying depending on region) and at an expected temperature of about 1000 degrees C. This decrease in velocity of roughly 3-5% or more, is called the mid-lithosphere discontinuity (MLD). The lithosphere (hard rocks) of a stable continent is expected to be old, and cold, therefore observations of a geological wide-spread discontinuity in seismic velocity internal to the lithosphere is puzzling. This has led to a variety of different, often contradictory, explanatory models for a wavespeed drop within stable lithosphere, e.g., partial melt, anisotropy, sub-solidus rheology transitions, and chemical stratification. This project will evaluate these proposed causative models against new geophysical and geological constraints, using EarthScope data, laboratory experiments and computer modelling. The project will focus on (1) variation in elastic and anelastic properties and electrical conductivity across the MLD, (2) a global presence of the MLD, regardless of geological history, (3) laboratory studies of the influence of water (hydration) on properties of rock that could cause the velocity to increase, and (3) composition and textures of mantle xenoliths, samples of solid mantle rock that hitch a ride with rising magma. This project will engage early career scientists, Ph.D. students, and undergraduate students. The project will also promote EarthScope's education and outreach goals, by presenting the science results and research opportunities at the IRIS minority recruitment speaker series and the Nifty Fifty science lectures to K-12 educators and students.

The project will: (1) extend the seismological observations using new receiver-function estimates and Bayesian methodology that can quantify the magnitude of anisotropy and the sharpness of the velocity drop over a more extensive footprint of seismic stations; (2) acquire measurements of surface wave amplitudes and Pg reverberation coda to identify whether there is a peak in attenuation around the MLD depth; and (3) jointly integrate magnetotelluric (MT) conductivity estimates with new mineral-physics and seismological constraints, to identify the presence of melt or hydration across the MLD. The investigators will focus the study on the stable Precambrian North American Craton, which was covered by the second half of the lower-48 deployment of the EarthScope Transportable Array. The project will also involve new lab experiments on how water influences grain-boundary mobility in mantle rocks. An improved understanding of the MLD is crucial for relating EarthScope results to the evolution of continents. The extension of the seismological observation and its integration with MT and mineral physics is a unique approach that will provide new insights into the origin of the MLD. These new strategies for processing seismic data and integrating MT data with seismology and mineral physics will be useful to the general geophysical community. With this interdisciplinary hypothesis-testing approach, the investigators propose to obtain a better understanding of the cause of the MLD that will extend the initial studies of USArray data to the structure and evolution of the North American continent, and by analogy, to other continents.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/73342
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Shun-ichiro Karato.Collaborative Research: Understanding the Origin of the mid-lithospheric discontinuity within a stable continent from a combined geophysics-mineral physics approach.2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shun-ichiro Karato]的文章
百度学术
百度学术中相似的文章
[Shun-ichiro Karato]的文章
必应学术
必应学术中相似的文章
[Shun-ichiro Karato]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。