GSTDTAP
项目编号1745015
Collaborative Research: Constraining West Antarctic Ice Sheet Elevation during the last Interglacial
Matthew Zimmerer
主持机构New Mexico Institute of Mining and Technology
项目开始年2018
2018-09-01
项目结束日期2021-08-31
资助机构US-NSF
项目类别Continuing grant
项目经费122022(USD)
国家美国
语种英语
英文摘要This study will collect a novel dataset to determine how the West Antarctic Ice Sheet (WAIS) responded to a warmer climate during the last interglacial period (~125,000 years ago) by reconstructing the glacial history at the Mt. Waesche volcano. Reconstructing WAIS geometry when the ice sheet was smaller than present is difficult and data are lacking because the evidence lies beneath the present ice sheet. This study will drill through the ice sheet and recover bedrock that can be analyzed for its surface exposure history to help determine when the surface became overridden by the ice sheet. This study will provide constraints on the past maximum and minimum spatial extent of WAIS during the last glacial-interglacial cycle. Understanding the geometry of a reduced WAIS during intervals when the planet was warmer than present may provide a possible analogue for future environmental conditions given predicted temperature trends. A reduction of WAIS results in rising sea levels which threatens coastal communities across the globe. The data will help improve numerical ice sheet models to better predict WAIS response to current and future climate trends. The project supports a teacher educational workshop and the training of graduate and undergraduate students.

The goal of this project is to obtain rock samples from beneath the WAIS through shallow (<80 m) drilling at Mt. Waesche, a volcano in Marie Byrd Land, near an ice dome of WAIS (2000 m elevation). The lithologies of lava flows exposed on the flank of the volcano are well-suited for cosmogenic 3He and 36Cl as well as 40Ar/39Ar measurements which will establish eruption and exposure age. Existing 40Ar/39Ar data indicate basaltic lava flows on the volcano flank as young as 350 ka. Thus, measured cosmogenic nuclides measured in rock cores from beneath the ice surface will be indicative of relatively recent exposure during periods of reduced ice elevation, most likely, during the last interglacial. The first field season is focused on identifying appropriate locations for drilling and a ground penetrating radar (GPR) survey of the subglacial topography <100m under the blue ice area. Mapping and dating the adjacent exposed lava flows will allow tracing of lava flows of known age and composition below the ice margin that will be targeted for drilling the following year. The second field season activities include drilling 8 boreholes (two transects) through blue ice with the Winkie drill near the ice margin to 80 m depth to obtain rock cores from the sub-ice lava flows. 3He exposure ages will constrain the duration and minimum extent of past surface lowering of the WAIS in Marie Byrd Land. Deeper GPR imaging (up to 700 m) will hope to reveal additional evidence of lava/ice interactions that would independently place constraints on lower ice levels during past eruptions. Results from this study will be compared with the modeled ice elevation histories at Mt. Waesche to validate ice sheet modeling efforts.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/73199
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Matthew Zimmerer.Collaborative Research: Constraining West Antarctic Ice Sheet Elevation during the last Interglacial.2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Matthew Zimmerer]的文章
百度学术
百度学术中相似的文章
[Matthew Zimmerer]的文章
必应学术
必应学术中相似的文章
[Matthew Zimmerer]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。