GSTDTAP
项目编号1826643
Collaborative Research: A Teleconnection between the Tropical Madden-Julian Oscillation and Arctic Sudden Stratospheric Warming Events in Warm Climates
David Randall
主持机构Colorado State University
项目开始年2018
2018-07-01
项目结束日期2021-06-30
资助机构US-NSF
项目类别Standard Grant
项目经费418199(USD)
国家美国
语种英语
英文摘要The wintertime winds of the Northern Hemisphere stratosphere form a vortex circulating around a cold low pressure cell over the Arctic. Occasionally, perhaps six time in a decade, the vortex experiences a major disruption known as a stratospheric sudden warming (SSW), in which the Arctic stratosphere warms by tens of degrees celsius in just a few days. SSWs are often followed by cold air outbreaks and other forms of severe weather, thus they are of practical as well as scientific interest.

Classical studies of SSWs established that the breakdown of the vortex is caused by planetary-scale waves propagating upward and northward into the polar stratosphere. These waves can originate in various ways, and previous work by the PIs and others finds that some SSWs can be linked to the tropical Madden-Julian Oscillation (MJO). The MJO is a broad envelope of cloudiness and convective rainfall that forms over the equatorial Indian Ocean and propagates slowly eastward as far as the central Pacific. Planetary waves generated by the MJO are known to affect weather in middle and high latitudes but their effect on SSWs has not received much attention until recently. The MJO-SSW connection is of particular interest given recent studies suggesting that MJO activity increases when tropical sea surface temperatures (SSTs) increase. The increase in MJO activity suggests greater SSW frequency, but other factors such as changes in the jet streams in a warming climate must also be considered.

This project examines the MJO-SSW connection in a hierarchy of models of varying degrees of complexity. The research is enabled by a specialized model configuration which is capable of simulating both the MJO, which is notoriously difficult to capture in current weather and climate models, and SSWs. The model uses superparameterization (SP), a technique pioneered by one of the PIs in which cloud resolving models are embedded in every grid column of a global model (see AGS-0425247). The SP technique is applied in the Community Atmosphere Model (CAM, the atmospheric component model of the Community Earth System Model), used here with enhanced vertical resolution to capture stratospheric dynamics.

The work has broader impacts due to the effects of SSWs on surface weather in the Northern Hemisphere. The warming of tropical SSTs raises the prospect of stronger MJO events, and it is of practical interest to understand how stronger events will affect weather regimes over the US and other countries. Moreover, the slow propagation of the MJO offers some hope for extended-range prediction of extreme weather linked to SSWs, thus research on the MJO-SSW connection has implications for operational weather forecasting. The project has educational broader impacts through summer internships supporting undergraduates and local high school students, who are trained in python programming and atmospheric data analysis. The award also provides support and training to two graduate students, thereby providing for the future workforce in this research area.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/72849
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
David Randall.Collaborative Research: A Teleconnection between the Tropical Madden-Julian Oscillation and Arctic Sudden Stratospheric Warming Events in Warm Climates.2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[David Randall]的文章
百度学术
百度学术中相似的文章
[David Randall]的文章
必应学术
必应学术中相似的文章
[David Randall]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。