GSTDTAP
项目编号1819053
Collaborative Research: Sulfur Isotope Systematics and Oxygen Fugacity Evolution in the 1257 Samalas Magma Reservoir, Indonesia
Adrian Fiege
主持机构American Museum Natural History
项目开始年2018
2018-06-15
项目结束日期2021-05-31
资助机构US-NSF
项目类别Standard Grant
项目经费48089(USD)
国家美国
语种英语
英文摘要Sulfur is the third most abundant volatile element in volcanic systems following water and CO2. Release of sulfur to the atmosphere during volcanic eruptions can perturb climate on a global scale and cause acid rain, resulting in significant environmental impact. The eruption of Mt. Samalas on Lombok Island, Indonesia, in 1257 generated the largest volcanic sulfur emission event of the last 2000 years. This event is coincident with a multi-year global cooling event around the beginning of the "Little Ice Age." The central research question of this project is: how did this volcano build up so much eruptible sulfur? The scientist participants will test hypotheses of sulfur enrichment mechanisms by probing deep into sulfur's properties and behavior within sulfides, apatites, and volcanic glasses (rapidly cooled melts) from pumice samples from this eruption. The project will utilize the most advanced analytical techniques to investigate sulfur chemistry, many of which were developed recently by participants on the research team. This project will yield new insights into the capability of magmatic systems beneath volcanoes to accumulate reservoirs of eruptible sulfur large enough to create significant global environmental impacts. This work will support several early-career researchers, and will engage a diverse group of undergraduate students to participate at City University of New York (CUNY) and the American Museum of Natural History (AMNH).

The project exploits the complex geochemical behavior of sulfur to track its movement from the liquid phase (silicate melt) into solid (mineral) and gas phases in magmatic systems. Sulfur is a polyvalent element that can change its valence state from S2- to S6+ over a narrow redox range relevant for terrestrial magmatic systems. This makes sulfur an excellent tracer for changes in magma redox conditions that may have played a critical role in the transport, enrichment, and release of sulfur during the 1257 Mt. Samalas eruption. The involved magmatic processes (e.g., degassing) should lead to predictable fractionations of sulfur isotopes in glasses and minerals, which will further constrain the dynamics of sulfur build-up at Samalas. The valence states of sulfur in minerals and glasses will be determined via X-ray absorption near-edge structure (XANES) spectroscopy, whereas sulfur isotope ratios will be measured by secondary ionization mass spectrometry (SIMS). This dovetailing of redox and isotope studies is a powerful new approach to addressing sulfur-related science questions. This project will serve as a blueprint for future studies of other volcanic systems and will have implications for magmatic sulfide ore-forming processes and crustal magma evolution of interest to the broader Earth science community.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/72724
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Adrian Fiege.Collaborative Research: Sulfur Isotope Systematics and Oxygen Fugacity Evolution in the 1257 Samalas Magma Reservoir, Indonesia.2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Adrian Fiege]的文章
百度学术
百度学术中相似的文章
[Adrian Fiege]的文章
必应学术
必应学术中相似的文章
[Adrian Fiege]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。