GSTDTAP
项目编号1757045
Iron cycling in bioturbated sediments - Fluxes, diagenetic redistribution, and isotopic signatures
Laura Wehrmann
主持机构SUNY at Stony Brook
项目开始年2018
2018-04-01
项目结束日期2021-03-31
资助机构US-NSF
项目类别Standard Grant
项目经费574845(USD)
国家美国
语种英语
英文摘要Dissolved iron (Fe) is an important nutrient for photosynthetic microalgae in the surface ocean and low concentrations in seawater can limit their growth. Because microalgae are the basis of marine food webs, scientists strive to improve our understanding of Fe availability in the oceans and the importance of different iron sources. Iron enters the ocean via rivers, groundwater, and wind-blown dust; however, release from the seafloor can be an additional source but this contribution is not well known. In this project, scientists from the State University of New York, Stony Brook (SUNY-SB) will investigate how chemical reactions in ocean sediments and bottom-dwelling organisms, such as burrowing clams and worms, affect the transport of Fe from the seafloor into the overlying water. Animals pump water through their burrows to obtain oxygen and in the process, transport dissolved Fe out of the sediment and into the overlying water. We will analyze the Fe concentration in both muddy and sandy sediment and in the water that enters and exits animal burrows, as well as determine the isotope composition of the Fe. Different sources of Fe can have different isotope compositions which may help trace the origin of this element found in different parts of the ocean. An improved understanding of Fe cycling at the ocean seafloor will help us to better predict how changing environmental conditions, for example due to human influence, will affect important processes in the ocean, such as primary production by microalgae.

The project will allow two PhD students and several undergraduate students to take part in laboratory experimental work, sediment sampling during research cruises and train in chemical analysis of sediment and water. Undergraduate student involvement will be facilitated through the Undergraduate Research and Creative Activities (URECA) program at SUNY-SB. Also, in collaboration with the Science and Technology Entry Program (STEP), a summer module "Buried Alive" will be offered to historically underrepresented and economically disadvantaged high school students. It combines field sampling, laboratory experimentation, data analyses, and scientific communication. Students will set-up their own "seafloor ant farms" and record the activities of animals living in the sediment using photographic equipment. Students will be trained in using image analysis software to produce time-lapse movies which they will present on the final day of the program. Public outreach will be fostered through annual hands-on demonstrations of "seafloor slices" at the New York Marine Science Festival "Submerge" and at SUNY-SB earth celebration day "Earthstock" with real-time visualizations of pressure dynamics in the sediment induced by living organisms or by injecting water with syringes. The project supports the advancement and development of two Early Career Scientists with no prior NSF research support.



Dissolved Fe is an important nutrient for photosynthetic microalgae in the surface ocean and can limit their productivity. Iron is supplied to the ocean from multiple sources, including rivers, groundwater, hydrothermal vents, and by release from the seabed. This project will fill key gaps in our knowledge of seabed sources, and emphasizes the interconnected effects of bioturbation by infaunal organisms, bottom water oxygen (O2) concentrations, sedimentary organic matter content, and sediment permeability on iron cycling and isotopic redistribution in continental margin sediments. Specifically, we will gain a mechanistic understanding of the impact of variable O2 concentrations within infaunal burrows (as a function of irrigation activity and sedimentary setting) and in the overlying water (in response to large scale environmental change) on dissolved Fe fluxes and re-precipitation, the isotopic fractionation related to these processes, and the consequences for isotopic signatures of dissolved Fe in the water column and particulate Fe preserved in sediments. This project will significantly advance understanding of sedimentary Fe cycling and the use of Fe isotopes to constrain the magnitude and dynamics of the benthic Fe source to the ocean. Improved understanding of sedimentary Fe cycle will enhance prediction of future responses of biogeochemical processes such as primary production to rapidly changing environmental conditions and to optimally infer past conditions from authigenic Fe minerals preserved in the sedimentary record. This knowledge is particularly valuable with regard to continental shelf environments where anthropogenic effects are altering deposition patterns of organic carbon and expanding oxygen minimum zones.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/72484
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Laura Wehrmann.Iron cycling in bioturbated sediments - Fluxes, diagenetic redistribution, and isotopic signatures.2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Laura Wehrmann]的文章
百度学术
百度学术中相似的文章
[Laura Wehrmann]的文章
必应学术
必应学术中相似的文章
[Laura Wehrmann]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。