GSTDTAP
项目编号1748684
Acquisition of a Fourier Transform Infrared Imaging Microscope at LDEO
Terry Plank
主持机构Columbia University
项目开始年2018
2018-03-15
项目结束日期2019-02-28
资助机构US-NSF
项目类别Standard Grant
项目经费208362(USD)
国家美国
语种英语
英文摘要This grant supports acquisition of an Infrared (IR) imaging microscope at Lamont Doherty Earth Observatory (LDEO) for research focused primarily on the measurement of water and carbon dioxide (CO2) in glasses and crystals. The instrument will support faculty and student research at Columbia University, the American Museum of Natural History, other universities in the region and high school teachers and students. Water and CO2 analysis is an increasingly important tool in research on volatile element effects on mantle processes, volcanic activity and the environment. Detailed understanding of the distribution and chemical behavior of water and carbon dioxide in a range of rock types and conditions will be enabled by the acquisition. Students will be trained in instrumental procedures and the instrument will serve regional institutions in the Mid-Atlantic states and New England. The acquisition will also support faculty outreach efforts to engage regional K-12 and community college students in societally relevant environmental and geohazards research. This support is congruent with NSF's mission of promoting the progress of science and advancing the national health, prosperity and welfare and training the next generation scientific workforce.

The past years have seen a leap in understanding of the incorporation and diffusion of water in silicate minerals. Recent laboratory experiments have revealed infrared (IR) band-specific diffusivities in both clinopyroxene and olivine, meaning that the rate of water loss from a crystal depends on the specific defect that hosts H. Different defects can lose water at rates that vary over orders of magnitude. IR imaging becomes necessary to illuminate the zonation profiles for specific defects. Recent work finds pervasive H zonation profiles in volcanic crystals with rapid mapping, and potentially each crystal can tell its specific ascent history. Magma ascent rate is a parameter otherwise difficult to constrain, but one that may be critical to the vigor of eruption. Water zonation in minerals found in mantle xenoliths also records the timing of magma ascent and xenolith re-equilibration, essential for understanding the water content, and thus strength, of mantle lithosphere. IR imaging of water zonation in crystals and melts, at higher resolution and for greater populations of samples, has the capability to provide a new understanding of not only the volatile history of tectonic plates, but also the volatile budget, migration rate and explosive potential of magmas.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/72391
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Terry Plank.Acquisition of a Fourier Transform Infrared Imaging Microscope at LDEO.2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Terry Plank]的文章
百度学术
百度学术中相似的文章
[Terry Plank]的文章
必应学术
必应学术中相似的文章
[Terry Plank]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。