GSTDTAP
项目编号1724440
Collaborative Research: Combining complex systems tools, process-based modelling and experiments to bridge scales in low temperature geochemistry
Li Li
主持机构Pennsylvania State Univ University Park
项目开始年2018
2018
项目结束日期2020-12-31
资助机构US-NSF
项目类别Standard Grant
项目经费173352(USD)
国家美国
语种英语
英文摘要Investigators will combine new modelling approaches and experiments to understand the mechanisms by which organic carbon in stream waters increases. Carbon is an important constituent in the aquatic food web and plays an important role in water quality. This research is novel because, instead of beginning with locally-observed phenomena and build process-based models that scale those mechanisms up to a larger scale, the investigator team will mine large observatory datasets for more global patterns followed by the investigation of smaller scale processes. The project provides interdisciplinary training in modeling, lab and field approaches for multiple graduate and undergraduate students. Furthermore, the team will collaborate with a minority-serving, K-5 elementary school to develop and administer a professional development workshop for Vermont's K-5 teachers.

Because forested headwater catchments cover large geographical areas, they have disproportionate effects on the dissolved fraction of organic carbon (DOC) and are closely monitored across the globe. Significant increases in DOC fluxes from forested streams across the northern hemisphere have been documented by numerous studies and potential causes such as changes in climate, land use or precipitation composition (i.e. recovery from acidification) are debated. The lack of focus on the specific mechanisms potentially driving the DOC release makes the prediction of future DOC fluxes nearly impossible. The investigators propose to address this gap with a combination of modelling and experiments to test the hypotheses that 1) an increase in stream water DOC flux is driven by the regionally observed recovery from acidification (i.e. the increase in pH and decrease in ionic strength of wet and dry deposition), 2) DOC is released from soil aggregates that become unstable under these changing conditions, and 3) aggregate stability and DOC release is a function of soil composition and mineralogy, leading to the varied responses (presence or absence of DOC increase) despite potentially similar regional forcings. Big Data analysis using novel data-driven modelling techniques will use USGS and Critical Zone Observatory datasets to probe regional-scale data (>100 km) and identify general patterns (test hypotheses 1). Results from this step will inform selection of sites for more detailed process-based investigation at the catchment (km) to soil aggregate scale (micrometer) using Reactive Transport Modelling and experiments (test hypotheses 2-3). This research addresses a highly debated topic in C dynamics (i.e. increase DOC fluxes) and furthermore works toward a framework for the integration of scales, disciplines and approaches in low temperature geochemistry. The combination of statistical and process-based modelling with experiments to bridge scales varying >10 orders of magnitude is novel and potentially transformative for the field of low temperature geochemistry. The impact of this research is broadened by the interdisciplinary training provided for three graduate students and multiple undergraduate students. Furthermore, the investigators will collaborate with the College of Education and a minority-serving, K-5 school to develop and administer a professional development workshop for Vermont's K-5 teachers. Goals for this workshop are to i) provide professional development for K-5 educators on the Critical Zone as a framework for sustainability learning and ii) to begin to develop teaching modules with participating educators for the appropriate K-5 level.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/72199
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Li Li.Collaborative Research: Combining complex systems tools, process-based modelling and experiments to bridge scales in low temperature geochemistry.2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li Li]的文章
百度学术
百度学术中相似的文章
[Li Li]的文章
必应学术
必应学术中相似的文章
[Li Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。