GSTDTAP
项目编号1643466
Collaborative Research: Chemoautotrophy in Antarctic Bacterioplankton Communities Supported by the Oxidation of Urea-derived Nitrogen
James Hollibaugh
主持机构University of Georgia Research Foundation Inc
项目开始年2017
2017-10-01
项目结束日期2019-09-30
资助机构US-NSF
项目类别Standard Grant
项目经费267113(USD)
国家美国
语种英语
英文摘要Part 1: The project addresses fundamental questions regarding the role of nitrification (the conversion of ammonium to nitrate by a two-step process involving two different guilds of microorganisms: ammonia- and nitrite-oxidizers)in the Antarctic marine ecosystem. Specifically, the project seeks to evaluate the contribution of primary production supported by the energy in nitrogen compounds to the overall supply of organic carbon to the food web of the Southern Ocean. Previous measurements indicate that nitrification could contribute about 9% to primary production supporting the Antarctic food web on an annual basis, but those measurements did not include the additional production associated with nitrite oxidation. Additionally, the project will aim to determine the significance of the contribution of other sources of nitrogen, (specifically organic nitrogen and urea released by other organisms) to nitrification because these contributions may not be assessed by standard protocols. Such work will aid in better understanding the basis of the energy for the Antarctic marine ecosystems on an annual basis as well as better aid in understanding the energetics of the ecosystem in times and places where primary production based on light energy is limited (i.e. during the polar night or under sea ice cover).

This project will result in training a postdoctoral researcher and provide undergraduate students opportunities to gain hand-on experience with research on microbial geochemistry. The Palmer Long Term Ecological Research (LTER) activities have focused largely on the interaction between ocean climate and the marine food web affecting top predators. Relatively little effort has been devoted to studying processes related to the microbial geochemistry of nitrogen cycling, yet these are a major themes at other LTER sites. This work will contribute substantially to understanding an important aspect of nitrogen cycling and bacterioplankton production in the study area. The team will be working synergistically and be participating fully in the education and outreach efforts of the Palmer LTER, including making highlights of the findings available for posting to their project web site and participating in any special efforts they have in the area of outreach.

Part 2: The proposed work will quantify oxidation rates of 15N supplied as ammonium, urea and nitrite, allowing the estimation of the contribution of urea-derived N and complete nitrification (ammonia to nitrate) to chemoautotrophy and bacterioplankton production in Antarctic coastal waters. The project will compare these estimates to direct measurements of the incorporation of 14C into organic matter in the dark for an independent estimate of chemoautotrophy. The team aims to collect samples spanning the water column: from surface water (~10 m), winter water (50-100 m) and circumpolar deep water (>150 m); on a cruise surveying the continental shelf and slope west of the Antarctic Peninsula in the austral summer of 2018. Other samples will be taken to measure the concentrations of nitrate, nitrite, ammonia and urea, for qPCR analysis of the abundance of relevant microorganisms, and for studies of related processes. The project will rely on collaboration with the existing Palmer LTER to ensure that ancillary data (bacterioplankton abundance and production, chlorophyll, physical and chemical variables) will be available. The synergistic activities of this project along with the LTER activities will provide a unique opportunity to assess chemoautotrophy in context of the overall ecosystem's dynamics- including both primary and secondary production processes.
URL查看原文
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/72055
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
James Hollibaugh.Collaborative Research: Chemoautotrophy in Antarctic Bacterioplankton Communities Supported by the Oxidation of Urea-derived Nitrogen.2017.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[James Hollibaugh]的文章
百度学术
百度学术中相似的文章
[James Hollibaugh]的文章
必应学术
必应学术中相似的文章
[James Hollibaugh]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。