GSTDTAP
项目编号1701380
Collaborative Research: Reconstructing Mean State and ENSO Variability in the Eastern Equatorial Pacific under Glacial Forcing: A Combined Geochemical and Organic Proxy Approach
Matthew Schmidt
主持机构Old Dominion University Research Foundation
项目开始年2017
2017-09-15
项目结束日期2019-08-31
资助机构US-NSF
项目类别Standard Grant
项目经费275481(USD)
国家美国
语种英语
英文摘要The El Niño/Southern Oscillation (ENSO) phenomenon is the largest natural interannual signal in the Earth's climate system and has widespread effects on global climate that impact millions of people worldwide. A series of recent research studies predict an increase in the frequency of extreme El Niño and La Niña events as Earth's climate continues to warm. In order for climate scientists to forecast how ENSO will evolve in response to global warming, it is necessary to have accurate, comprehensive records of how the system has naturally changed in the past, especially across past abrupt warming events. Nevertheless, there remains significant uncertainty about past changes in tropical Pacific climate and how ENSO variability relates to the millennial-scale warming events of the last ice age. Therefore, this project will use both inorganic and organic geochemical proxies from a sediment core recovered from near the Galapagos Islands to reconstruct a comprehensive record of Eastern Equatorial Pacific (EEP) climate change and ENSO variability across multiple extreme climate events over the last 65,000 years. Results generated from this research will aid in the prediction of how ENSO will change over the next century and greatly improve future mitigation efforts.  Results of the project will also be integrated into multiple educational and public outreach programs at both Old Dominion University and the University of Florida. At ODU, the lead investigator will mentor a postdoctoral researcher who will supervise an undergraduate research project.

This research outlines the most comprehensive study to date evaluating how the EEP mean state and ENSO varied across the Dansgaard-Oeschger (D-O) cycles of Marine Isotope Stage 3 (MIS 3). The magnitude, duration, and number of these abrupt climate events make them the ideal natural experiment to test how the system will evolve in the near future. By utilizing a unique combination of multi-proxy methods together in a single study, this project will generate records of surface and subsurface temperature, thermocline temperature variance, upper-water column hydrography and upwelling variability from eight time slices in the EEP between 30 to 65 kyr. These objectives will be achieved by using a high-sedimentation rate core recovered from the heart of the cold-tongue EEP upwelling region during R/V Melville cruise MV1014 in 2010. Sedimentation rates in this core are among the highest in ENSO-sensitive regions of the tropical Pacific, ~10.5 cm/kyr, allowing for the resolution of millennial-scale climate events. The project will use a combination of foraminiferal stable isotope and trace metal geochemistry to reconstruct long-term changes in the EEP mean state across MIS 3. Next, 8 time slices spanning the extremes of MIS 3 climate (D-O interstadials, stadials and Heinrich Events) will be selected for further analyses. For each time slice, ENSO variability will be determined using thermocline temperature variance derived from single shell foraminiferal Mg/Ca analyses. In addition, upwelling intensity and nutrient variability will be characterized by the Diol Index and the Long Chain Diol Index. Together, this multi-proxy approach will allow for the most complete characterization of how the EEP varied across millennial-scale climate events of MIS 3 and will provide critical insight into how ENSO is related to extreme climate states of the past. This study will also provide climate modelers with critical information needed to simulate future climate change.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/71991
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Matthew Schmidt.Collaborative Research: Reconstructing Mean State and ENSO Variability in the Eastern Equatorial Pacific under Glacial Forcing: A Combined Geochemical and Organic Proxy Approach.2017.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Matthew Schmidt]的文章
百度学术
百度学术中相似的文章
[Matthew Schmidt]的文章
必应学术
必应学术中相似的文章
[Matthew Schmidt]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。