GSTDTAP
项目编号1661800
Collaborative Research: An Integrated Understanding of the Initiation and Subsequent Dynamical and Microphysical Characteristics of Deep Convective Storms during RELAMPAGO
Robert Trapp
主持机构University of Illinois at Urbana-Champaign
项目开始年2017
2017-08-15
项目结束日期2021-07-31
资助机构US-NSF
项目类别Continuing grant
项目经费4322(USD)
国家美国
语种英语
英文摘要RELAMPAGO (Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations) is a study of extreme thunderstorms. It includes a field program to be conducted from 1 Nov to 15 Dec 2018 in west central Argentina, which is regarded as perhaps the world?s best natural laboratory for thunderstorm research. Cutting edge observations from mobile Doppler radar and other instruments will be collected and then analyzed to answer the very basic question of why the thunderstorms in this region are among the most intense in the world. RELAMPAGO will identify the mechanisms that trigger these thunderstorms and contribute to their violence. RELAMPAGO will also determine why these extreme storms are such prolific hail producers, but do not appear to generate many tornadoes. Understanding the initiation and evolution of thunderstorms and how they generate severe weather in Argentina will enable scientists to create better, and more general, theories about thunderstorms in the U.S. This will lead to better forecasts of U.S. thunderstorms and their severe impacts, including hail and tornadoes, and reduce losses of life and property in the U.S. RELAMPAGO is a collaborative project with critical involvement from the University of Illinois, the Pennsylvania State University, University of Colorado, and the Center for Severe Weather Research. Student participation will help shape the careers of the future generation of scientists, engineers and forecasters by equipping them with cutting edge skills and knowledge.

RELAMPAGO is a study of extreme thunderstorms. It includes a field program to be conducted from 1 Nov to 15 Dec 2018 in west central Argentina. RELAMPAGO is motivated by satellite observations showing that the thunderstorms in this region are arguably the deepest and most intense in the world. The scarcity of available ground-based observations has kept open the question of why these thunderstorms are so intense. Thus, a novel set of targeted, integrated ground-based instrumentation, including mobile Doppler radars, radiosonde systems, and deployable meteorological sensors will be used to investigate the local environment in which these storms initiate and organize, and the internal storm processes that generate severe weather.

Specifically, the extensive suite of RELAMPAGO observations and complementary numerical simulations will be used to determine the convective triggering mechanisms in this environment, and the properties of the regional orography and circulations that contribute to the extreme nature of these storms. Orographically modified environments will be related to the frequency of supercellular convection and its transition to mesoscale convective systems. A new understanding of how such environmental modifications enhance hail production will also be gained, as will an understanding of how (and when) the environments support severe-wind production but reduce the likelihood of tornadogenesis through stronger cold pool generation and reduction of low-level vertical wind shear. This research on extreme thunderstorms outside the U.S. will leverage the results from past U.S. projects, permitting a more general, and geographically unconstrained, understanding of such storms. This will aid the development of conceptual and predictive models that can be used by forecasters in the U.S. and worldwide, mitigating future loss of life and property.
来源学科分类Geosciences - Atmospheric and Geospace Sciences
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/71482
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Robert Trapp.Collaborative Research: An Integrated Understanding of the Initiation and Subsequent Dynamical and Microphysical Characteristics of Deep Convective Storms during RELAMPAGO.2017.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Robert Trapp]的文章
百度学术
百度学术中相似的文章
[Robert Trapp]的文章
必应学术
必应学术中相似的文章
[Robert Trapp]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。