GSTDTAP
项目编号1722680
Collaborative Research: Multi-scale models of subduction zone earthquake cycle observations
Thorsten Becker
主持机构University of Texas at Austin
项目开始年2017
2017-07-01
项目结束日期2019-06-30
资助机构US-NSF
项目类别Standard Grant
项目经费233467(USD)
国家美国
语种英语
英文摘要Earth's tectonic plates get recycled back into the mantle at subduction zones. The largest earthquakes happen there, and these megathrust environments also generate a range of other geohazards including tsunamis and volcanoes, making their study of great societal relevance. Recently, seismological and geodetic measurements have revealed a range of phenomena associated with megathrust behavior that are not captured by a simple, stick-slip earthquake cycle model of slow loading and catastrophic rupture. These newly discovered phenomena include transient, creeping events of fault slip on decadal scales which may indicate preparatory behavior of the fault system, perhaps systematically linked to the main seismic event. Mechanical models have not quite kept up with these new discoveries and our understanding of the physical processes behind these phenomena is incomplete. A new, integrative framework is therefore needed to understand the physical mechanisms and fault constitutive laws behind complex deformation and seismicity patterns. This project seeks to develop such a mechanical model, initially for the data rich Japan setting, in order to understand regional megathrust dynamics and fault interaction patterns, as well as improve seismic hazard estimates. Later, such a mechanical model may potentially be deployed at other subduction zones such as Cascadia and assist in interpreting existing and planned monitoring data streams for earthquake forecasting and early warning.

To capture the spatial and temporal scales involved in this complex problem, three sub-projects are to be pursued in collaboration between researchers at University of Texas Austin (UTIG), Purdue University, and the University of Tokyo: 1) The development of sets of multi earthquake-cycle scenarios based on numerical models of visco-elastic, inter-, pre-, co- and post-seismic fault loading in Japan. 2) The development of global mantle flow and regional, time-evolving mantle convection models to understand long-term, subduction induced forcing of plate boundaries and backarcs in the region. 3) The development of cross-timescale, visco-elasto-plastic models in 3-D, incorporating rate and state friction as well as other fault constitutive laws in a dynamically consistent, thermo-mechanical convection framework. This will enable, for example, studying the role of pre-seismic, slow slip phenomena for fault zone evolution, eventually in the presence of fluid flow. All project parts will be integrated, and results from different approaches cross-checked. Moreover, all sub-projects are complementary and will guide the establishment of the general subduction zone model that is needed to understand earthquake cycle observations and seismicity in Japan and elsewhere.
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/71212
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Thorsten Becker.Collaborative Research: Multi-scale models of subduction zone earthquake cycle observations.2017.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Thorsten Becker]的文章
百度学术
百度学术中相似的文章
[Thorsten Becker]的文章
必应学术
必应学术中相似的文章
[Thorsten Becker]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。