GSTDTAP
项目编号1603460
COLLABORATIVE RESEARCH: What Controls the Transfer of Diatom Organic Matter to age-0 Pollock Prey in the Bering Sea Ecosystem?
Michael Lomas
主持机构Bigelow Laboratory for Ocean Sciences
项目开始年2016
2016-11-01
项目结束日期2019-10-31
资助机构US-NSF
项目类别Standard Grant
项目经费108953(USD)
国家美国
语种英语
英文摘要The highly productive and economically important Walleye Pollock commercial fishery of the Bering Sea depends on poorly understood food web pathways. Primary producers of organic carbon, notably diatoms, are consumed by large crustacean zooplankton, which, in turn, are consumed by juvenile pollock. The dominant paradigm for the system suggests that understanding changes in the biomass of large crustacean zooplankton can help estimate the survival of juvenile pollock; however, recent data show two orders of magnitude uncertainty in the carbon demand of large crustacean zooplankton. Such uncertainties impact the ability to manage the fishery. A revised model for the system has been proposed that involves consideration of both the quantity and quality of organic matter produced by diatoms and how this would constrain support for the commercial fishery. Before investing in a major field effort to test this approach, this project will assess the expected magnitude of change and associated errors, for diatom organic matter production, including the individual terms that are used to estimate it, i.e. abundance, growth rate, and cell carbon. This effort will be based on laboratory experiments and historical data analysis.

The project will contribute to STEM workforce development through partial support for the training of a post-doctoral associate. Undergraduates would be entrained into the science through an REU program at Bigelow Laboratory for Ocean Sciences and through the Colby College Semester at Bigelow program. K-12 outreach will be facilitated through participation in the successful and long-standing Dauphin Island Sea Lab Discovery Hall program. Outreach to the general public will be accomplished through a blog, Bigelow?s Café Scientifique, and the Bigelow newsletter. The long-term goal for the research that this project would initiate is improved mechanistic and predictive models for commercial fisheries management.

There is no consensus on the mechanistic relationship of where carbon from the lower trophic levels goes in the Bering Sea ecosystem, hence simple proportionality relationships between primary production and fisheries are used routinely. Bottom-up control on age-0 walleye pollock prey, i.e. large crustacean zooplankton (LCZ), could help constrain this coupling between the primary producers and pollock fishery, but there is a two-order-of-magnitude uncertainty in the LCZ carbon demand based on estimates from the Bering Sea Ecosystem Study (BEST). A new conceptual model is required and this project will begin to refine the issue by focusing on diatoms, which have a less patchy distribution than LCZ and are a key prey item of LCZ. A major knowledge gap exists in the understanding of the magnitude of diatom loss processes; the logical next step to understanding the fundamental linkage between primary production and fisheries in the eastern Bering Sea is to answer: what is the proportion of diatom primary production available for supporting higher trophic organisms and with which biogeochemical variables does this covary? Before testing this approach in a field setting, the expected magnitude of change and associated error for diatom organic matter production, including the individual terms that go into that estimate (i.e. abundance, growth rate, cell carbon), must be understood. This project will combine culture studies using diatoms isolated from high-latitude regions with literature and BEST program data to meet this initial objective.
来源学科分类Geosciences - Polar Programs
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/70562
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Michael Lomas.COLLABORATIVE RESEARCH: What Controls the Transfer of Diatom Organic Matter to age-0 Pollock Prey in the Bering Sea Ecosystem?.2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Michael Lomas]的文章
百度学术
百度学术中相似的文章
[Michael Lomas]的文章
必应学术
必应学术中相似的文章
[Michael Lomas]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。