GSTDTAP
项目编号1602557
Collaborative Research: P2C2: Re-assessing Pliocene and Miocene warm climates and identifying the 'missing physics' to explain them
Mark Pagani
主持机构Yale University
项目开始年2016
2016-09-15
项目结束日期2019-08-31
资助机构US-NSF
项目类别Standard Grant
项目经费300000(USD)
国家美国
语种英语
英文摘要Many of the long-term trends and transitions in climate over the past 65 million years are correlated with major changes in atmospheric carbon dioxide concentrations. But not all. Periods lasting hundreds of thousands or millions of years, for example during the Miocene and Pliocene, are loosely correlated with CO2 changes that are too small-- at least according to climate models-- to generate the large climate changes evidenced in proxy records. The purpose of this study is to investigate Miocene and Pliocene climate, with an emphasis on understanding the mechanisms responsible for widespread warmth, reduced temperature gradients, and apparently high climate sensitivity. Climate models have been unable previously to reproduce these features, raising concerns regarding their ability to correctly predict future warming. This study is novel and significant because a multi-disciplinary team combining expertise in paleoclimate data, models, and theory will generate geographically widespread, multiproxy past climate records. This data will be compared with new and advanced modeling approaches. A benefit of this approach is that climate models will be improved by this comparison with past data and the lessons learned will lead eventually to improved predictions of future climate change.

Specifically, although significant progress has been achieved in understanding of Miocene and Pliocene climates, explanations are lacking for some their basic elements, such as: weakened meridional temperature gradients, weakened zonal temperature gradients across the Pacific, and preferential warming in polar regions, in upwelling regions, and in continental interiors. This study's goals are to better quantify these enigmatic features by developing new geochemical records and compare this data with state-of-the art climate modeling that will enable better prediction of the Earth system to greenhouse gas and non-greenhouse gas forcing. To accomplish this, the project will: (1) Enhance understanding of the signal being recorded by various paleoclimate proxies for sea surface temperature (SST) and generate a suite of new TEX86 and Uk37 paleo-SST records, complemented by existing records, to provide a comprehensive view of evolving surface ocean conditions from the mid Miocene through the Pliocene. (2) Conduct simulations of mid-Miocene and mid-Pliocene climate using the Community Earth System Model (CESM), with a new atmospheric component, CAM5, that includes more sophisticated treatment of cloud-aerosol interactions than previous models. Sensitivity studies to cloud microphysical properties and parameterization, including mixed-phase cloud properties and aerosol (sulfate and dust) emissions will be conducted to constrain previously unexplored interactions between cloud microphysics, aerosols and past climates. (3) Simulate Miocene and Pliocene climates using the "Super-parameterized" (SP) version of the CESM. SP-CESM incorporates a cloud-resolving model in each grid cell to represent convection and clouds more explicitly rather than parameterize them, allowing a more accurate representation of convection and cloud effects on the large-scale atmospheric circulation. In addition to the research objectives, the project has education and engagement components. It will fund two graduate students and a female early career research scientist in STEM disciplines. Three public engagement efforts will be conducted, including public lectures, a website for a broad audience, and an afterschool program for high school students.
来源学科分类Geosciences - Ocean Sciences
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/70408
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Mark Pagani.Collaborative Research: P2C2: Re-assessing Pliocene and Miocene warm climates and identifying the 'missing physics' to explain them.2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mark Pagani]的文章
百度学术
百度学术中相似的文章
[Mark Pagani]的文章
必应学术
必应学术中相似的文章
[Mark Pagani]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。