GSTDTAP
项目编号1636332
The role of cryptic nutrient cycling within sinking particles on trace element transport in oxygen minimum zones
James Moffett
主持机构University of Southern California
项目开始年2016
2016-09-01
项目结束日期2019-08-31
资助机构US-NSF
项目类别Standard Grant
项目经费838981(USD)
国家美国
语种英语
英文摘要The major process controlling the internal cycling of biologically active trace metals in the oceans is through uptake onto and remineralization from sinking particles. Uptake can occur through active biological uptake into living cells as micronutrients, or chemical adsorption onto sinking materials. This latter process is often referred to as scavenging. The relative importance of these processes is often unclear, especially for elements that are both biologically active and also "particle reactive." The latter characteristic is associated with sparing solubility in seawater and the formation of strong complexes with surface sites, with examples such as iron. Recent evidence suggests that the simplistic view of a sinking particle as a passive surface for metal complexation may require some revision. Investigators James Moffett and Seth John propose to study the chemistry of transition metals within large sinking particles and the resultant effects on metal biogeochemical cycling. They will collaborate with a group at the University of Washington, recently funded to study the microbiology and molecular biology of these particles. The central hypothesis of this project is that reducing microbial microenvironments within large particles support high rates of nitrogen and sulfur cycling, greatly enhancing the particles' influence on metal chemistry. The investigators will study these processes in the Eastern Tropical North Pacific Oxygen Minimum Zone (OMZ). This regime was selected because of the wide range of redox conditions in the water column, and strong preliminary evidence that microenvironments within sinking particles have major biogeochemical impacts.


The primary objective is to investigate the interactions of metals with particles containing microenvironments that are more highly reducing than the surrounding waters. Such microenvironments arise when the prevailing terminal electron acceptor (oxygen, or nitrate in oxygen minimum zones) becomes depleted and alternative terminal electron acceptors are utilized. Within reducing microenvironments metal redox state and coordination chemistry are different from the bulk water column, and these microenvironments may dominate metal particle interactions. For example, reduction of sulfate to sulfide could bind metals that form strong sulfide complexes, such as cadmium and zinc, processes previously thought to be confined to sulfidic environments. Reducing microenvironments may account for the production of reduced species such as iron(II), even when their formation is thermodynamically unfavorable in the bulk water column. Tasks include observational characterization of dissolved and particulate trace metals and stable isotopes in the study area, sampling and in situ manipulation of particles using large-dimension sediment traps, shipboard experimental incubations under a range of redox conditions, and modeling, providing insight from microscopic to global scales. The metal chemistry data will be interpreted within a rich context of complimentary data including rates of nitrogen and sulfur cycling, phylogenetics and proteomic characterization of the concentration of key enzymes. Broader impacts include training of a postdoctoral scientist, international collaborations with Mexican scientists, and involvement of undergraduate students in the research.
来源学科分类Geosciences - Ocean Sciences
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/70345
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
James Moffett.The role of cryptic nutrient cycling within sinking particles on trace element transport in oxygen minimum zones.2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[James Moffett]的文章
百度学术
百度学术中相似的文章
[James Moffett]的文章
必应学术
必应学术中相似的文章
[James Moffett]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。