GSTDTAP
项目编号1624321
RUI: Melt Viscosities in Silica-undersaturated Systems
Genevieve Robert
主持机构Bates College
项目开始年2016
2016-09-01
项目结束日期2019-08-31
资助机构US-NSF
项目类别Continuing grant
项目经费136265(USD)
国家美国
语种英语
英文摘要The movement of magma through the Earth, or magma transport, is an important agent of mass and heat transfer within the Earth. The efficiency of magma transport controls the separation of planets into different phases after their formation, the scale and frequency of volcanic eruptions, and the behavior of the planetary crust during mountain building. In turn, how far and how fast magma travels from its source before it hardens and the violence of volcanic eruptions are controlled by viscosity, the measure of magma's resistance to flow. Viscosity is one of the most variable physical properties in geological processes and its magnitude depends on temperature, chemistry, and on the magma's content of volatiles like water, carbon dioxide, and fluorine. Viscosity is subject to change rapidly in response to processes such as the formation of crystals or bubbles in the magma. These processes can cause chemical and thermal changes, leading to temperature and viscosity feedbacks in magmas. Modeling and understanding of geologic processes at all scales therefore requires accurate quantitative determination of magma transport and thermal properties. This can be done experimentally, by a combination of low- (<1000°C) and high-temperature (>1000°C) viscosity measurements and high-temperature (up to 1500°C) heat capacity measurements on the same suite of samples at atmospheric pressure.

For a suite of silica-undersaturated aluminosilicate melts that are analogs for highly-alkalic mafic magmas, the PI and Bates College undergraduate students will quantify the effects of (1) Na-K mixing, of (2) Al/(Al+Si) ratio, and of (3) fluorine on viscosity and heat capacity. The effects of fluorine on viscosity and heat capacity of such melts are especially important to consider as fluorine's abundance correlates positively with the abundance of potassium and has a relatively high solubility at atmospheric conditions. This has implications for the transport behavior of terrestrial magmas that are nominally degassed with respect to other volatiles that are not significantly soluble at atmospheric pressure (e.g., water and carbon dioxide) and also for Martian magmas, which are thought to originate from the melting of a more fluorine-rich source relative to Earth. The results will be modeled using configurational entropy theory, which relates the timescale at which structural changes occur within a fluid (e.g., magma or melt) to the probability of these structural rearrangements. The results from this research will contribute to a better understanding of the chemical controls on viscosity and heat capacity, which in turn allows the construction of better predictive models of magma movement and emplacement in the Earth, and of lava eruption and flow at the Earth's surface.
来源学科分类Geosciences - Earth Sciences
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/70136
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Genevieve Robert.RUI: Melt Viscosities in Silica-undersaturated Systems.2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Genevieve Robert]的文章
百度学术
百度学术中相似的文章
[Genevieve Robert]的文章
必应学术
必应学术中相似的文章
[Genevieve Robert]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。