GSTDTAP
项目编号1626484
MRI: Acquisition of an Inductively Coupled Plasma Optical Emission Spectrometer at Central Washington University
Carey Gazis
主持机构Central Washington University
项目开始年2016
2016-09-01
项目结束日期2017-08-31
资助机构US-NSF
项目类别Standard Grant
项目经费127539(USD)
国家美国
语种英语
英文摘要This Major Research Instrumentation award provides funding for the acquisition of an Inductively Coupled Plasma Optical Emission Spectometer (ICP-OES) at Central Washington University, a regional comprehensive university that serves primarily undergraduates. This new instrument will provide high-quality chemical analyses of water, wine, aerosol, soil, snow and ice core samples, allowing for a range of interdisciplinary research on how chemicals vary and cycle near the Earth?s surface and how their presence is influenced by human activity. Four faculty members in the Geological Sciences, Chemistry, and Biology Sciences Departments, and the Environmental Studies Program will incorporate the new instrument into their research, their classes, and their outreach activities. The four faculty members all have active externally-funded research programs that include undergraduate and Masters students; the instrumentation will broaden the research scope and training for these students. The faculty also have strong ties with local, regional and national agencies such as the National Park Service, the Washington Department of Ecology, the Yakama Nation, and the Environmental Protection Agency. The new instrument will enhance these collaborations and provide more opportunities for students to interact with these external agencies. The instrument acquisition is timed to coincide with the occupation of a new science building by the Geological Sciences Department at CWU. As such, the instrument is supported by the addition of modern laboratories and associated support staff, greatly amplifying the infrastructure improvements provided by the new instrumentation.

The ICP-OES is a stable, reliable instrument that can generate large quantities of high-quality concentration data for a range of major, minor and trace elements in water; this instrument will provide new data that is fundamental for ongoing research in environmental geochemistry/chemistry, atmospheric science, climate science, and environmental science and complements data that can be obtained using existing instrumentation (e.g., isotope ratio mass spectrometer, single particle soot photometer, ion chromatograph) at CWU. The ICP-OES will be integral to several lines of research at CWU that include elemental concentrations in water, wine, aerosol, soil, and snow and ice core samples. PI Gazis, an environmental geochemist, uses elemental data combined with other geochemical tracers to characterize groundwater in order to better understand groundwater mixing, groundwater-surface water interactions and groundwater recharge versus withdrawal rates. She and her students have also used elemental data to quantify changes in stream and soil water chemistry related to anthropogenic perturbations and natural variations such as clear-cutting, agriculture, wildfire, and climate. Co-PI Johansen, an environmental chemist, studies aerosol chemistry, in particular how trace metals contained within carbonaceous aerosols affect their toxicity and their effects on global climate. In addition, she is a principle researcher in CWU?s wine quality testing laboratory in which the chemistry of wines, including elemental analysis, is compared to the wine terroir and wine characteristics and faults. Co-PI Kaspari is a climate scientist who uses geochemical records from ice cores to reconstruct past climate and environmental variability. Additionally Kaspari studies how the deposition of black carbon and other impurities on snow and ice reduces albedo and accelerates melt. Co-PI Arango studies nutrient cycling in aquatic ecosystems and the response of these cycles to perturbations such as stream restoration and metal deposition. All of these areas of research will benefit from the fundamental geochemical data that an ICP-OES can provide. In addition, this instrument will create opportunities for new collaborations between these scientists in their areas of overlapping research interests such as snow and precipitation chemistry, biogeochemical cycles in and around streams, and atmosphere/climate interactions.
来源学科分类Geosciences - Earth Sciences
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/70131
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Carey Gazis.MRI: Acquisition of an Inductively Coupled Plasma Optical Emission Spectrometer at Central Washington University.2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Carey Gazis]的文章
百度学术
百度学术中相似的文章
[Carey Gazis]的文章
必应学术
必应学术中相似的文章
[Carey Gazis]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。