GSTDTAP
项目编号1624068
MRI: Acquisition of a Computing Cluster for Atmospheric and Geophysical Research
Varavut Limpasuvan
主持机构Coastal Carolina University
项目开始年2016
2016-09-01
项目结束日期2019-08-31
资助机构US-NSF
项目类别Standard Grant
项目经费108524(USD)
国家美国
语种英语
英文摘要This is a Major Research Instrumentation (MRI) award which funds the acquisition of a 5-node cluster computer to support research and education activities in atmospheric and oceanic sciences. On the atmospheric side the primary application of the machine is the Extended Whole Atmosphere Community Climate Model (WACCM-X), which is used here to study the mechanisms through which sudden stratospheric warming events (SSWs) affect the ionosphere. SSWs are large-scale disturbances of the stratospheric circumpolar circulation in winter (typically over the North Pole) in which stratospheric temperature can rise by up to 50C over the course of a few days. While these disturbances occur over the pole and at altitudes of about 20km, they can affect the electron content of the ionosphere over the equator at an altitude of 300km, where they can interfere with satellites used for navigation, communication, and other purposes. The mechanisms by which this influence propagates over such great distances is not known but is believed to involve the vertical propagation of atmospheric tides. Work here tests the idea that the SSW impact can occur because westerly propagating planetary-scale waves excited by the SSW produce zonal wind anomalies which affect the vertical propagation of tides, and the alternative hypothesis that the mechanism involves changes in the heating due to ultraviolet absorption by ozone.

The oceanographic work considers wave-turbulence interactions in the coastal ocean, an important issue for understanding the transport of sediments associated with erosion and pollution and for understanding water properties essential to ocean biology. The work uses a large eddy simulation (LES) model, the Spectral Multi-domain model, to simulate waves in the near-shore ocean (bottom depths up to 100m or so). A key issue in understanding the interaction of waves and turbulence is the problem of separating the motion field into wave orbital motions and turbulence, which the PIs are attacking using a proper orthogonal decomposition (POD) in which individual modes represent different length scales within the flow and have energy levels which follow the classical Kolmogorov cascade. The cluster computer is used to calculate a three-dimensional POD which provides separate sets of modes to represent the wave orbital motions, small-scale turbulence, and nonlinear interactions between the two occurring at intermediate spatial scales.

The MRI award has broader impacts by providing infrastructure for research and education, including courses in oceanic, atmospheric, and computer science. In particular, the computer supports the newly formed PhD program in Coastal and Marine System Science, the first doctoral program at the university. Also, undergraduate students are strongly engaged in the assembly and maintenance of the cluster computer, thus acquiring hands-on skills in working with hardware integration and operating systems.
来源学科分类Geosciences - Atmospheric and Geospace Sciences
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/70119
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Varavut Limpasuvan.MRI: Acquisition of a Computing Cluster for Atmospheric and Geophysical Research.2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Varavut Limpasuvan]的文章
百度学术
百度学术中相似的文章
[Varavut Limpasuvan]的文章
必应学术
必应学术中相似的文章
[Varavut Limpasuvan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。