GSTDTAP
项目编号1633951
Collaborative Research: Toward an Improved Understanding of Blue Carbon: The Role of Seagrasses in Sequestering CO2
Matthew Long
主持机构Woods Hole Oceanographic Institution
项目开始年2016
2016-08-01
项目结束日期2019-07-31
资助机构US-NSF
项目类别Standard Grant
项目经费311667(USD)
国家美国
语种英语
英文摘要This project will develop a quantitative understanding of the factors controlling carbon cycling in seagrass meadows that will improve our ability to quantify their potential as blue (ocean) carbon sinks and predict their future response to climate change, including sea level rise, ocean warming and ocean acidification. The research will advance a new generation of bio-optical-geochemical models and tools (ECHOES) that have the potential to be transform our ability to measure and predict carbon dynamics in shallow water systems. The award will also be used to train the next generation of young scientists by supporting the research of an early career scientist, two Ph.D. students, at least 2 undergraduate students, and at least two interns from the Ocean Lakes High School (Va. Beach) Math & Science Academy, under the combined supervision of the PIs. All students will participate in experimental design, implementation and data analysis and will present the findings of their research at major international scientific meetings each year as well as publishing their results in top-ranked peer reviewed journals. PI Zimmerman maintains an ongoing outreach collaboration with the Virginia Aquarium & Marine Science Center to facilitate the development of educational interpretation and programming from this project that will be specifically targeted to the >700,000 Aquarium visitors annually. The physical setting of the Aquarium will be used as a forum to engage the visitors in dialogue about the broader issue of climate change with Aquarium staff and volunteers. Zimmerman is collaborating with the Virginia Aquarium to help design and implement additional educational programs, resources, and exhibits including the development a new Chesapeake Bay tank that will house living seagrasses. The results from this project will be incorporated into Virginia Aquarium's year-long Mentoring Young Scientists program and as standards-based educational materials for use at the Aquarium in programs for schools, scouts and general audiences. At various times throughout project, the PIs and students will participate in the Virginia Aquarium's Speaking of Science lecture series, which are free to general public to help connect our research with the local community.

The study will utilize cutting-edge methods for evaluating oxygen and carbon exchange (Eulerian and eddy covariance techniques) combined with biomass, sedimentary, and water column measurements to develop and test numerical models that can be scaled up to quantify the dynamics of carbon cycling and sequestration in seagrass meadows in temperate and tropical environments of the West Atlantic continental margin that encompass both siliciclastic and carbonate sediments. The comparative analysis across latitudinal and geochemical gradients will address the relative contributions of different species and geochemical processes to better constrain the role of seagrass carbon sequestration to global biogeochemical cycles. Specifically the research will quantify: (i) the relationship between C stocks and standing biomass for different species with different life histories and structural complexity, (ii) the influence of above- and below-ground metabolism on carbon exchange, and (iii) the influence of sediment type (siliciclastic vs. carbonate) on Blue Carbon storage. Seagrass biomass, growth rates, carbon content and isotope composition (above- and below-ground), organic carbon deposition and export will be measured. Sedimentation rates and isotopic composition of PIC, POC, and iron sulfide precipitates, as well as porewater concentrations of dissolved sulfide, CO2, alkalinity and salinity will be determined in order to develop a bio-optical-geochemical model that will predict the impact of seagrass metabolism on sediment geochemical processes that control carbon cycling in shallow waters. Model predictions will be validated against direct measurements of DIC and O2 exchange in seagrass meadows, enabling the investigators to scale-up the density-dependent processes to predict the impacts of seagrass distribution and density on carbon cycling and sequestration across the submarine landscape.
来源学科分类Geosciences - Ocean Sciences
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/69971
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Matthew Long.Collaborative Research: Toward an Improved Understanding of Blue Carbon: The Role of Seagrasses in Sequestering CO2.2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Matthew Long]的文章
百度学术
百度学术中相似的文章
[Matthew Long]的文章
必应学术
必应学术中相似的文章
[Matthew Long]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。