GSTDTAP
项目编号1443525
High Resolution Heterogeneity at the Base of Whillans Ice Stream and its Control on Ice Dynamics
Susan Schwartz
主持机构University of California-Santa Cruz
项目开始年2015
2015-09-01
项目结束日期2018-08-31
资助机构US-NSF
项目类别Standard Grant
项目经费191569(USD)
国家美国
语种英语
英文摘要This project evaluates the role that water and rock/ice properties at the base of a fast moving glacier, or ice stream, play in controlling its motion. In Antarctica, where surface melting is limited, the speed of ice flow through the grounding zone (where ice on land detaches, and begins to float on ocean water) controls the rate at which glaciers contribute to sea level rise. The velocity of the ice stream is strongly dependent on resistance from the bed, so understanding the processes that control resistance to flow is critical in predicting ice sheet mass balance. In fact, the Intergovernmental Panel on Climate Change (IPCC) recognized this and stated in their 4th assessment report that reliable predictions of future global sea-level rise require improved understanding of ice sheet dynamics, which include basal controls on fast ice motion. Drilling to obtain direct observations of basal properties over substantial regions is prohibitively expensive. This project uses passive source seismology to "listen to" and analyze sounds generated by water flow and/or sticky spots at the ice/bed interface to evaluate the role that basal shear stress plays in ice flow dynamics. Because polar science is captivating to both scientists and the general public, it serves as an excellent topic to engage students at all levels with important scientific concepts and processes. In conjunction with this research, polar science educational materials will be developed to be used by students spanning middle school through the University level. Starting in summer 2015, a new polar science class for high school students in the California State Summer School for Mathematics and Science (COSMOS) will be offered at the University of California-Santa Cruz. This curriculum will be shared with the MESA Schools Program, a Santa Cruz and Monterey County organization that runs after-school science clubs led by teachers at several local middle and high schools with largely minority and underprivileged populations.

This proposal extends the period of borehole and surface geophysical monitoring of the Whillians Ice Stream (WIS) established under a previous award for an additional 2 years. Data from the WIS network demonstrated that basal heterogeneity, revealed by microseismicity, shows variation over scales of 100's of meters. An extended observation period will allow detailed seismic characterization of ice sheet bed properties over a crucial length scale comparable to the local ice thickness. Due to the fast ice velocity (>300 m/year), a single instrumented location will move approximately 1 km during the extended 3 year operational period, allowing continuous monitoring of seismic emissions as the ice travels over sticky spots and other features in the bed (e.g., patches of till or subglacial water bodies). Observations over ~1km length scales will help to bridge a crucial gap in current observations of basal conditions between extremely local observations made in boreholes and remote observations of basal shear stress inferred from inversions of ice surface velocity data.
来源学科分类Geosciences - Polar Programs
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/68649
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Susan Schwartz.High Resolution Heterogeneity at the Base of Whillans Ice Stream and its Control on Ice Dynamics.2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Susan Schwartz]的文章
百度学术
百度学术中相似的文章
[Susan Schwartz]的文章
必应学术
必应学术中相似的文章
[Susan Schwartz]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。