GSTDTAP
项目编号1524734
Collaborative Research: Earthquake Gates: Linking Earthquake Rupture Length to the Dynamics of Restraining Double Bends on the Altyn Tagh Fault
Michael Oskin
主持机构University of California-Davis
项目开始年2015
2015-08-01
项目结束日期2018-07-31
资助机构US-NSF
项目类别Continuing grant
项目经费125384(USD)
国家美国
语种英语
英文摘要The length of a fault rupture generally controls the magnitude of a large earthquake. Unusually large, rare, and unexpected earthquakes overwhelm mitigation measures and the societal capacity to respond, leading to a cascade of disastrous effects. In order to assess the potential for such rare events, this study calibrates how effectively geometrical complexities of a fault impede earthquake rupture propagation. The project, carried out in close collaboration with Chinese researchers, integrates field observations of fault geometry and slip behavior of the Altyn Tagh fault in China, one of the longest active strike-slip faults on Earth, with numerical rupture simulations to predict the range of potential earthquake sizes along a major intracontinental strike-slip fault. The outcome of this research will be a means to assess the likelihood of rare, unusually large events. The project will advance desired societal outcomes through: (1) full participation of women and underrepresented minorities in STEM; (2) improved well-being of individuals in society through a new understanding of earthquake rupture processes; (3) development of a diverse, globally competitive STEM workforce through training of graduate and undergraduate students; and (4) increased partnerships through a strong international collaboration with Chinese scientists and international research experiences for students. The project is supported by the Tectonics Program and NSF's International Science and Engineering program.

The research project will develop and apply techniques to integrate field observations of fault geometry, kinematics, and slip behavior with numerical rupture simulations to predict the range of potential earthquake sizes along the central Altyn Tagh fault over a length (800 km) that well exceeds the longest recorded continental strike-slip earthquake (420-450 km). The central Altyn Tagh fault fault is divided into segments by four restraining double bends (Aksay, Pingding Shan, Akato Tagh, and Sulamu Tagh) that are each hypothesized, based on their geometry, to stop most, but not all earthquake ruptures. Multi-cycle spontaneous dynamic rupture models show that these earthquake gates may be open or closed to a particular direction of rupture propagation depending upon fault geometry and stress conditions inherited from prior earthquakes. Prior research showed that dynamic rupture effects (resulting from seismic wave propagation from the rupture front) and interseismic stress relaxation (off-fault deformation) both contribute to geologically testable patterns of along-strike earthquake slip and cumulative slip-rate gradients. This project will apply these rupture models and geologic tests to the Pingding Shan double restraining bend, which appears to be a relatively nascent structure along the Altyn Tagh fault. A thorough field campaign will collect new slip rate, slip-per-event, fault kinematic, and structural data to constrain a multi-cycle rupture model for the Pingding Shan restraining double bend. Models will be developed that couple all four of the major restraining double bends of the central Altyn Tagh fault, and the ensemble behavior of this geologically-calibrated model system will be investigated to determine the likelihood of rare, exceptionally long earthquake ruptures.
来源学科分类Geosciences - Earth Sciences
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/68388
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Michael Oskin.Collaborative Research: Earthquake Gates: Linking Earthquake Rupture Length to the Dynamics of Restraining Double Bends on the Altyn Tagh Fault.2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Michael Oskin]的文章
百度学术
百度学术中相似的文章
[Michael Oskin]的文章
必应学术
必应学术中相似的文章
[Michael Oskin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。