GSTDTAP
项目编号1516593
Collaborative Research: Tectonic and climatic forcing of hydrological systems in the southern Great Basin: Implications for ancient and future aquatic ecosystem resilience
Jeffrey Knott
主持机构California State University-Fullerton Foundation
项目开始年2015
2015-08-01
项目结束日期2019-07-31
资助机构US-NSF
项目类别Continuing grant
项目经费18913(USD)
国家美国
语种英语
英文摘要The southern Great Basin is among the most arid regions in North America. It has almost no
perennial streams, but does have >1,000 springs. These springs are islands of aquatic habitat
in an ocean of desert. Remarkably, many of these isolated springs contain diverse aquatic
ecosystems and even endemic species of fish, spring snails, and other aquatic organisms. The
presence of many aquatic species that can only survive in water is evidence that the springs
are remnants of a perennial drainage system, and the presence of endemic species requiring
intervals in the million-year range for genetic divergence are evidence that at least some
of these springs have never desiccated over the geological time scale. Aquatic biogeographical
patterns thus inform the geological and hydrological history of the region.

This is a project to expand the already-large regional biogeographical database and to use the combined
new and preexisting data to test models of tectonic and paleohydrological evolution of the
southern Great Basin. The PIs will focus on two timescales: that of the extensional breakup of
the region from the late Miocene to the present and that of glacial/interglacial climate cycles.
Extensive work has been done to understand the extensional history of the region, which started
in the eastern portion of the study area at ~14 Ma and migrated westward to the Sierra Nevada
front, driven by plate-boundary dynamics. They will simulate this evolution using a regional
quasi-3D kinematic/tectonic-geomorphic-hydrologic coupled model that fully couples movement
along faults, mass distribution, magmatism, isostatic compensation and flexural deformation
with hydrology and surface geomorphic processes, including erosion and deposition. The extensional
fragmentation of the hydrological system will be studied and groundwater flow, necessary to
simulate the resulting development of springs, will be an integral part of the regional tectonic-geomorphic-hydrologic model.
.
Modeled paleohydrologic histories will be tested against biotic data (aquatic biota inventories,
microbial and macrofaunal DNA, and genetic divergence times) with island biogeography theory.
The PIs will test for relations of hydrologic fragmentation chronology with endemic species and
for ecosystem diversity with spring resilience, as inferred from groundwater ages and climatically
driven modeling. They will use these results to assess and improve their tectonic/paleohydrologic models.
来源学科分类Geosciences - Earth Sciences
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/68316
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Jeffrey Knott.Collaborative Research: Tectonic and climatic forcing of hydrological systems in the southern Great Basin: Implications for ancient and future aquatic ecosystem resilience.2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jeffrey Knott]的文章
百度学术
百度学术中相似的文章
[Jeffrey Knott]的文章
必应学术
必应学术中相似的文章
[Jeffrey Knott]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。