GSTDTAP
项目编号1501096
RUI: Cirrus Ice Crystal Surface Structure and Kinetics at the Nanoscale
Nathan Magee
主持机构The College of New Jersey
项目开始年2015
2015-07-01
项目结束日期2018-06-30
资助机构US-NSF
项目类别Continuing grant
项目经费63117(USD)
国家美国
语种英语
英文摘要The role of cirrus clouds in the radiative balance of the climate system is still a poorly constrained problem. The successful modeling of cirrus coverage, cloud evolution, and response to a changing climate has been limited by fundamental uncertainties in the microphysics of the constituent ice particles. Important questions remain regarding cirrus ice particle nucleation, growth and sublimation efficiency, and particle morphology. This project will address two of these fundamental uncertainties through novel use of modern nanotechnology tools. First, do ice crystal facets in cirrus clouds exhibit roughened surfaces at the nanoscale and microscale, and if so, what factors affect the degree and character of roughening? Secondly, does the presence or absence of roughened surfaces alter predicted rates of water vapor-ice phase exchange?

Intellectual Merit:
Improved modeling of cirrus clouds is of widely acknowledged strategic importance for climate modeling, and there is broad agreement that a paucity of laboratory measurements of ice microphysics is among the most significant constraints on progress. Aircraft probes and cloud chambers are making advances, but one avenue of potential discovery remains largely untapped: modern materials imaging and analysis tools have yet to be fully applied to ice surfaces under atmospherically relevant conditions. Such analysis can be expected to reveal new information about ice crystal surface structures and kinetics. Preliminary data acquired by Environmental Scanning Electron Microscopy (ESEM) have already demonstrated the ubiquitous presence of ice surface roughness in lab-grown crystals, and revealed growth rates that deviate from classical predictions. However, the ice crystals already analyzed by ESEM have been made on a substrate in a pure vapor environment; the relevance of these findings to the atmosphere cannot be fully established without a revised experimental approach. This project aims to address this question head-on by conducting laboratory experiments under gaseous conditions more representative of the atmosphere and through balloon-borne capture, retrieval, and analysis of actual cirrus particles. Successful completion of the project will firmly establish the character of surface roughness on cirrus particles, contribute to improved modeling of vapor deposition/sublimation, and provide the clearest, highest-resolution images of cirrus ice particles ever acquired.

Broader Impacts:
This project will be conducted by physics department faculty and students at a primarily undergraduate institution, The College of New Jersey (TCNJ), in Ewing, NJ. Undergraduate research has proven to be a highly effective tool for recruiting outstanding students into careers in the field of atmospheric science. Largely because of the relative scarcity of undergraduate programs, the atmospheric sciences lag behind other natural sciences in developing this pipeline. This project will help to more firmly establish atmospheric science within the physics department at TCNJ, a large and growing department. By providing cutting-edge research opportunities to outstanding physics undergraduates, the project will pave the way for an under-utilized path into careers in atmospheric science. In addition, during each year, two of the undergraduate researchers in the program will be dual science/secondary education students who will carry the excitement of scientific discovery into their high school classrooms. These future teachers will engage high school students from the high-need school districts of Trenton and Ewing, New Jersey in inquiry-centered laboratory experiences based on the scientific questions being addressed in the proje
来源学科分类Geosciences - Atmospheric and Geospace Sciences
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/68146
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Nathan Magee.RUI: Cirrus Ice Crystal Surface Structure and Kinetics at the Nanoscale.2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Nathan Magee]的文章
百度学术
百度学术中相似的文章
[Nathan Magee]的文章
必应学术
必应学术中相似的文章
[Nathan Magee]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。