GSTDTAP
项目编号1459774
Collaborative Research: Multiscale modeling of internal tides at topographic generation sites: turbulence and wave energetics:
Sutanu Sarkar
主持机构University of California-San Diego
项目开始年2015
2015-02-15
项目结束日期2018-01-31
资助机构US-NSF
项目类别Standard Grant
项目经费334861(USD)
国家美国
语种英语
英文摘要Turbulent processes associated with internal waves occurring at or near the generation sites of internal tides are key ingredients in maintaining and regulating the global ocean circulation which is a crucial component of the climate system affecting simultaneously the uptake of carbon dioxide into the ocean and the meridional transport of heat. Accurate computation of the magnitude and spatial distribution of turbulent dissipation is necessary for the development of physically based parameterizations of conversion and dissipation rates in the near-field. Qualitative changes in turbulence occur when geometry, barotropic forcing and environmental parameters change. The spatial and temporal scales of the physical processes that drive the turbulent energy dissipation during the generation of internal waves span several orders of magnitude. To address these knowledge gaps, a multi-scale approach is necessary to span the disparity between scales: from the scale of the outgoing low-mode internal tide (vertical scale is of order one kilometer, horizontal scale is of order tens of kilometers, time is of order hours) through the nonlinear formation of higher wave number modes to, finally, the turbulence events (spatial scale of meters and time scale of minutes). The integration of models across disparate scales is not only relevant to ocean sciences but also of great interest in many areas of science and engineering, e.g., the representation of turbulent boundary layer processes in medium- and long-term weather forecasting. The broader community interested in developing or applying parameterizations will have access to the simulation data and the numerical model code. Two graduate students will be trained and gain valuable experience in applying cutting edge numerical tools to a complex ocean problem.

A numerical investigation of the generation process of internal waves by barotropic tidal flow over an isolated topographic feature scales with the relevant non-dimensional parameters will be conducted. The driving hypothesis is that only the inclusion of turbulence in a realistic way can provide a correct description of the dissipation rates during generation and near-field propagation of internal waves at these sites. The scale-separation will be handled through a novel hierarchical approach that combines Large Eddy Simulation (LES) at small scales with the Stratified Ocean Model with Adaptive Refinement (SOMAR) for the large scales. The LES model, equipped with a sophisticated subgrid-scale model, is capable of providing a faithful description of turbulence, without the need of tunable parameters. The non-hydrostatic SOMAR is specifically optimized to deal with the anisotropy of the internal wave problem. The goal is to implement a two-way nested SOMAR-LES model so that the LES is driven with realistic forcing, and SOMAR receives realistic turbulent feedbacks. We will do so for a model triangular ridge at oceanic scales over a wide range of key non-dimensional parameters: overall Excursion number, obstacle criticality, inner Excursion number and length of critical slope. The simulations will be analyzed to ascertain (i) the dependence of internal wave energetics on the non-dimensional parameters, and (ii) a better understanding of stabilities, turbulence and associated dissipation rates in the near-field.
来源学科分类Geosciences - Ocean Sciences
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/67585
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Sutanu Sarkar.Collaborative Research: Multiscale modeling of internal tides at topographic generation sites: turbulence and wave energetics:.2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sutanu Sarkar]的文章
百度学术
百度学术中相似的文章
[Sutanu Sarkar]的文章
必应学术
必应学术中相似的文章
[Sutanu Sarkar]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。