GSTDTAP  > 气候变化
Plastic Planet: Tracking Pervasive Microplastics Across the Globe
admin
2021-04-12
发布年2021
语种英语
国家美国
领域气候变化
正文(英文)

Really big systems, like ocean currents and weather, work on really big scales. And so too does your plastic waste, according to new research from Janice Brahney from the Department of Watershed Sciences. The plastic straw you discarded in 1980 hasn't disappeared; it has fragmented into pieces too small to see, and is cycling through the atmosphere, infiltrating soil, ocean waters and air. Microplastics are so pervasive that they now affect how plants grow, waft through the air we breathe, and permeate distant ecosystems. They can be found in places as varied as the human bloodstream to the guts of insects in Antarctica.

Understanding how microplastics move through global systems is essential to fixing the problem, said Brahney. Her new research focuses on how these invisible pieces of plastic get into the atmosphere, how long they stay aloft, and where in our global system we can expect to find hotspots of microplastic deposition.

Plastics enter the atmosphere ... not directly from garbage cans or landfills as you might expect ... but from old, broken-down waste that makes its way into large-scale atmospheric patterns. Roads are a big source of atmospheric plastics, where vehicle tires churn and launch skyward the tiny pieces through strong vehicle-created turbulence. Ocean waves, too, are full of insoluble plastic particles that used to be food wrappers, soda bottles, and plastic bags. These "legacy plastic" particles bob to the top layer of water and are churned by waves and wind, and catapulted into the air.

Another important source for the re-emission of plastics is dust produced from agricultural fields. Plastics are introduced to the soil when fertilizers from waste treatments operations are used (virtually all microplastics that are flushed with wastewater remain with the biowaste after the treatment process). Wind can also be a factor near population centers, whisking broken-down plastic particles into the air.

Once in the atmosphere, plastics could remain airborne for up to 6.5 days -- enough time to cross a continent, said Natalie Mahowald, coauthor on the paper. The most likely place for plastic deposition from the atmosphere is over (and into) the Pacific and Mediterranean oceans, but continents actually receive more net plastics from polluted ocean sources than they send to them, according to the models. The U.S., Europe, Middle East, India and Eastern Asia are also hotspots for land-based plastic deposition. Along the coasts, ocean sources of airborne plastic become more prominent, including America's west coast, the Mediterranean and southern Australia. Dust and agriculture sources for airborne plastics factor more prominently in northern Africa and Eurasia, while road-produced sources had a big impact in heavily populated regions the world over.

This study is important, said Brahney, but it is just the beginning. Much more work is needed on this pressing problem to understand how different environments might influence the process ... wet climates versus dry ones, mountainous regions versus flatlands. The world hasn't slowed its production or use of plastic, she said, so these questions become more pressing every passing year.


Story Source:

Materials provided by S.J. & Jessie E. Quinney College of Natural Resources, Utah State University. Original written by Lael Gilbert. Note: Content may be edited for style and length.


Journal Reference:

  1. Janice Brahney, Natalie Mahowald, Marje Prank, Gavin Cornwell, Zbigniew Klimont, Hitoshi Matsui, Kimberly Ann Prather. Constraining the atmospheric limb of the plastic cycle. Proceedings of the National Academy of Sciences, 2021; 118 (16): e2020719118 DOI: 10.1073/pnas.2020719118

Cite This Page:

S.J. & Jessie E. Quinney College of Natural Resources, Utah State University. "Plastic planet: Tracking pervasive microplastics across the globe." ScienceDaily. ScienceDaily, 13 April 2021. .
S.J. & Jessie E. Quinney College of Natural Resources, Utah State University. (2021, April 13). Plastic planet: Tracking pervasive microplastics across the globe. ScienceDaily. Retrieved April 13, 2021 from www.sciencedaily.com/releases/2021/04/210412161911.htm
S.J. & Jessie E. Quinney College of Natural Resources, Utah State University. "Plastic planet: Tracking pervasive microplastics across the globe." ScienceDaily. www.sciencedaily.com/releases/2021/04/210412161911.htm (accessed April 13, 2021).

URL查看原文
来源平台Science Daily
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/322227
专题气候变化
推荐引用方式
GB/T 7714
admin. Plastic Planet: Tracking Pervasive Microplastics Across the Globe. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。