GSTDTAP  > 地球科学
Material from Russia will triple the capacity of lithium-ion batteries
admin
2021-03-10
发布年2021
语种英语
国家美国
领域地球科学 ; 气候变化
正文(英文)
IMAGE

IMAGE: Evgeny Kolesnikov, an assistant at the Department of Functional Nanosystems and High-Temperature Materials, NUST MISIS view more 

Credit: Sergey Gnuskov/NUST MISIS

The scientists of the National University of Science and Technology "MISIS" (NUST MISIS) being a part of an international team of researches managed to increase the capacity and extend the service life of lithium-ion batteries. According to the researchers, they have synthesized a new nanomaterial that can replace low-efficiency graphite used in lithium-ion batteries today. The results of the research are published in the Journal of Alloys and Compounds.

Lithium-ion batteries are widely used for household appliances from smartphones to electric vehicles. The charge-discharge cycle in such battery is provided by the movement of lithium ions between two electrodes -- from a negatively charged anode to a positively charged cathode.

The scope of application of lithium-ion batteries is constantly expanding, but at the same time, according to the scientists, their capacity is still limited by the properties of graphite -- the main anode material. Scientists from NUST MISIS managed to obtain a new material for anodes that can provide a significant increase in capacity and extend battery service life.

"Porous nanostructured microspheres with the composition Cu0.4Zn0.6Fe2O4, that we have extracted, used as anode material provide three times higher capacity than the batteries existing on market. Besides, it allows to increase the number of charge-discharge cycles by 5 times compared to other promising alternatives to graphite. This improvement is achieved due to a synergistic effect with a combination of a special nanostructure and the composition of used elements", -- Evgeny Kolesnikov, an assistant at the Department of Functional Nanosystems and High-Temperature Materials, NUST MISIS said.

The synthesis of the final material happens via one step process without intermediate stages due to the use of the spray-pyrolysis method. As the scientists explained, aqueous solution with ions of special metals is converted into fog with the help of ultrasound, and then water is evaporated at temperatures up to 1200 ° C with decomposition of the original metal salts. As the result, micron or submicron spheres with the porosity, that is required to operate in a lithium-ion system, are extracted.

###

Electrochemical studies of the material synthesized by NUST MISIS specialists were carried out by the scientists from the Seoul National University of Science and Technology (Republic of Korea), the Norwegian University of Science and Technology (Norway), and the SRM Institute of Science and Technology (India).

The research team intends to continue researches for new even more efficient compositions of battery electrodes in the future.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/317511
专题地球科学
气候变化
推荐引用方式
GB/T 7714
admin. Material from Russia will triple the capacity of lithium-ion batteries. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。