GSTDTAP  > 地球科学
Characterising cold fusion in 2D models
admin
2020-12-16
发布年2020
语种英语
国家美国
领域地球科学 ; 气候变化
正文(英文)

Progress towards 'cold fusion,' where nuclear fusion can occur at close to room temperatures, has now been at a standstill for decades. However, an increasing number of studies are now proposing that the reaction could be triggered more easily through a mechanism involving muons - elementary particles with the same charge as electrons, but with around 200 times their mass. Through a study published in EPJ D, researchers led by Francisco Caruso at the Brazilian Centre for Physical Research have shown theoretically how this process would unfold within 2D systems, without any need for approximations.

The team's results could lead to long-awaited advances in the field of cold fusion - which has been proposed as an efficient, sustainable way to harvest vast amounts of energy. Since muons are so much heavier than electrons, they will orbit far closer to atomic nuclei when captured by hydrogen atoms. This enables the nuclei to fuse into helium far more readily - after which the muon is released from the system. However, since the amount of energy released is relatively small, it has remained challenging for theoretical physicists to propose a reliable basis for the technique, limiting its progress so far.

Caruso's team took a different approach in their study: this time, focusing on calculating the elementary processes involved in muon-catalysed fusion in 2D. The researchers then compared the behaviour of their model with 3D measurements, which revealed that the 2D process is influenced by significantly different parameters. Most strikingly, they showed that fusion is 1 billion times more likely to occur between a muonic pair of tritium atoms - a form of hydrogen containing two extra neutrons in its nucleus - than is the case for 3D. By directly calculating these probabilities, instead of estimating them, the team's findings could provide valuable insights for future studies of cold fusion.

###

Reference

F. Carusoa, A. Tropera, V. Ogurib, F. Silveira (2020) A bidimensional quasi-adiabatic model for muon-catalyzed fusion in muonic hydrogen molecules, European Physical Journal D 74:240, https://doi.org/10.1140/epjd/e2020-10479-6

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/307031
专题地球科学
气候变化
推荐引用方式
GB/T 7714
admin. Characterising cold fusion in 2D models. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。