GSTDTAP  > 地球科学
Nanodevices show how living cells change with time, by tracking from the inside
admin
2020-10-20
发布年2020
语种英语
国家美国
领域地球科学 ; 气候变化
正文(英文)
IMAGE

IMAGE: At this point in development, the embryo chromosomes (which appear red in the centre) are preparing to separate during the first cell division. The device prongs can be seen... view more 

Credit: Professor Tony Perry

For the first time, scientists have introduced minuscule tracking devices directly into the interior of mammalian cells, giving an unprecedented peek into the processes that govern the beginning of development.

This work on one-cell embryos is set to shift our understanding of the mechanisms that underpin cellular behaviour in general, and may ultimately provide insights into what goes wrong in ageing and disease.

The research, led by Professor Tony Perry from the Department of Biology and Biochemistry at the University of Bath in the UK, involved injecting a silicon-based nanodevice together with sperm into the egg cell of a mouse. The result was a healthy, fertilised egg containing a tracking device.

The tiny devices are a little like spiders, complete with eight highly flexible 'legs'. The legs measure the 'pulling and pushing' forces exerted in the cell interior to a very high level of precision, thereby revealing the cellular forces at play and showing how intracellular matter rearranged itself over time.

The nanodevices are incredibly thin - similar to some of the cell's structural components, and measuring 22 nanometres, making them approximately 100,000 times thinner than a pound coin. This means they have the flexibility to register the movement of the cell's cytoplasm as the one-cell embryo embarks on its voyage towards becoming a two-cell embryo.

"This is the first glimpse of the physics of any cell on this scale from within," said Professor Perry. "It's the first time anyone has seen from the inside how cell material moves around and organises itself."

WHY PROBE A CELL'S MECHANICAL BEHAVIOUR?

The activity within a cell determines how that cell functions, explains Professor Perry. "The behaviour of intracellular matter is probably as influential to cell behaviour as gene expression," he said. Until now, however, this complex dance of cellular material has remained largely unstudied. As a result, scientists have been able to identify the elements that make up a cell, but not how the cell interior behaves as a whole.

"From studies in biology and embryology, we know about certain molecules and cellular phenomena, and we have woven this information into a reductionist narrative of how things work, but now this narrative is changing," said Professor Perry. The narrative was written largely by biologists, who brought with them the questions and tools of biology. What was missing was physics. Physics asks about the forces driving a cell's behaviour, and provides a top-down approach to finding the answer.

"We can now look at the cell as a whole, not just the nuts and bolts that make it."

Mouse embryos were chosen for the study because of their relatively large size (they measure 100 microns, or 100-millionths of a metre, in diameter, compared to a regular cell which is only 10 microns [10-millionths of a metre] in diameter). This meant that inside each embryo, there was space for a tracking device.

The researchers made their measurements by examining video recordings taken through a microscope as the embryos developed. "Sometimes the devices were pitched and twisted by forces that were even greater than those inside muscle cells," said Professor Perry. "At other times, the devices moved very little, showing the cell interior had become calm. There was nothing random about these processes - from the moment you have a one-cell embryo, everything is done in a predictable way. The physics is programmed."

The results add to an emerging picture of biology that suggests material inside a living cell is not static, but instead changes its properties in a pre-ordained way as the cell performs its function or responds to the environment. The work may one day have implications for our understanding of how cells age or stop working as they should, which is what happens in disease.

The study is published this week in Nature Materials and involved a trans-disciplinary partnership between biologists, materials scientists and physicists based in the UK, Spain and the USA.

The study is published this week in Nature Materials and involved a trans-disciplinary partnership between embryologists in Bath and the USA led by Professor Perry, and materials scientists and physicists led by Professor José Antonio Plaza at the Instituto de Microelectrónica de Barcelona (IMB-CNM) in Spain.

###

LINK TO PAPER: https://pubmed.ncbi.nlm.nih.gov/32451513/

SHORT FILM: https://vimeo.com/421576734 The first few hours of life for 5 mouse embryos containing nanodevices. Five mouse embryos, each containing a nanodevice that is 22-millionths of a metre long. The film begins when the embryos are 2-hours old and continues for 5 hours. Each embryo is about 100-millionths of a metre in diameter.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/299617
专题地球科学
气候变化
推荐引用方式
GB/T 7714
admin. Nanodevices show how living cells change with time, by tracking from the inside. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。