GSTDTAP  > 地球科学
DOI10.5194/acp-2020-510
Significant wintertime PM2.5 mitigation in the Yangtze River Delta, China from 2016 to 2019: observational constraints on anthropogenic emission controls
Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Khalid Mehmood, Weiping Liu, Tianfeng Chai, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld
2020-07-22
发表期刊Atmospheric Chemistry and Physics
出版年2020
英文摘要Ambient fine particulate matter (PM2.5) mitigation relies strongly on anthropogenic emission control measures, the actual effectiveness of which is challenging to pinpoint owing to the complex synergies between anthropogenic emissions and meteorology. Here, observational constraints on model simulations allow us to derive not only reliable PM2.5 evolution but also accurate meteorological fields. In this study, we isolate meteorological factors to achieve reliable estimates of surface PM2.5 responses to both long-term and emergency emission control measures from 2016 to 2019 over the Yangtze River Delta (YRD), China. The results show that long-term emission control strategies play a crucial role in curbing PM2.5 levels (> 14 μg/m3, 19 %), especially in the megacities and other areas with abundant anthropogenic emissions. The G20 summit hosted in Hangzhou in 2016 provides a unique and ideal opportunity involving the most stringent, even unsustainable, emergency emission control measures. For the winter time periods from 2016 to 2019, the most substantial declines in PM2.5 concentrations (~ 35 μg/m3, ~ 59 %) are thus achieved in Hangzhou and its surrounding areas. The following hotspots also emerge in megacities, especially in Shanghai (32 μg/m3, 51 %), Nanjing (27 μg/m3, 55 %), and Hefei (24 μg/m3, 44 %). Compared to the long-term policies from 2016 to 2019, the emergency emission control measures implemented during the G20 Summit achieve more significant decreases in PM2.5 concentrations (17 μg/m3 and 41 %) over most of the whole domain, especially in Hangzhou (24 μg/m3, 48 %) and Shanghai (21 μg/m3, 45 %). By extrapolation, we derive insight into the magnitude and spatial distributions of PM2.5 mitigation potentials across the YRD, revealing significantly additional rooms for curbing PM2.5 levels.

领域地球科学
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/286725
专题地球科学
推荐引用方式
GB/T 7714
Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Khalid Mehmood, Weiping Liu, Tianfeng Chai, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld. Significant wintertime PM2.5 mitigation in the Yangtze River Delta, China from 2016 to 2019: observational constraints on anthropogenic emission controls[J]. Atmospheric Chemistry and Physics,2020.
APA Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Khalid Mehmood, Weiping Liu, Tianfeng Chai, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld.(2020).Significant wintertime PM2.5 mitigation in the Yangtze River Delta, China from 2016 to 2019: observational constraints on anthropogenic emission controls.Atmospheric Chemistry and Physics.
MLA Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Khalid Mehmood, Weiping Liu, Tianfeng Chai, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld."Significant wintertime PM2.5 mitigation in the Yangtze River Delta, China from 2016 to 2019: observational constraints on anthropogenic emission controls".Atmospheric Chemistry and Physics (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Khalid Mehmood, Weiping Liu, Tianfeng Chai, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld]的文章
百度学术
百度学术中相似的文章
[Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Khalid Mehmood, Weiping Liu, Tianfeng Chai, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld]的文章
必应学术
必应学术中相似的文章
[Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Khalid Mehmood, Weiping Liu, Tianfeng Chai, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。