GSTDTAP  > 地球科学
DOI10.5194/acp-2020-402
Investigation of the wet removal rate of black carbon in East Asia: validation of a below- and in-cloud wet removal scheme in FLEXPART v10.4
Yongjoo Choi, Yugo Kanaya, Masayuki Takigawa, Chunmao Zhu, Seung-Myung Park, Atsushi Matsuki, Yasuhiro Sadanaga, Sang-Woo Kim, Xiaole Pan, and Ignacio Pisso
2020-05-25
发表期刊Atmospheric Chemistry and Physics
出版年2020
英文摘要Understanding the global distribution of atmospheric black carbon (BC) is essential to unveil its climatic effect. However, there are still large uncertainties regarding the simulation of BC transport due to inadequate information about the removal process. We accessed the wet removal rate of BC in East Asia based on long-term measurements over the 2010–2016 period at three representative background sites (Baengnyeong and Gosan in South Korea and Noto in Japan). The average wet removal rate, represented by transport efficiency (TE), i.e. the fraction of undeposited BC particles during transport, was estimated as 0.73 in East Asia from 2010 to 2016. According to accumulated precipitation along trajectory, TE was lower in East and North China, where the industrial sector (thin-coated) is dominant; in contrast, that in South Korea and Japan showed higher values due to the transport sector (thick-coated), with emissions mainly from diesel vehicles. By the same token, TE in winter and summer showed the highest and lowest values, respectively, depending on the dominant emission sectors, such as house heating (thick-coated) and industry. The average half-life and e-folding lifetime of BC were 2.8 and 7.1 days, respectively, similar to previous studies, but those values differed according to the geographical location and meteorological conditions of each site. Next, by comparing TE from the FLEXible PARTicle (FLEXPART) Lagrangian transport model (version 10.4), we diagnosed the scavenging coefficients (s−1) of the below- and in-cloud scavenging scheme implemented in FLEXPART. The overall median TE from FLEXPART (0.91) was overestimated compared to the measured value, implying underestimation of wet scavenging coefficients in the model simulation. The median of the below-cloud scavenging coefficient showed a lower value than that calculated from FLEXPART, by a factor of 1.7. On the other hand, the overall median of the FLEXPART in-cloud scavenging coefficients was highly underestimated by 1 order of magnitude compared to the measured value. From the analysis of artificial neural networks, the convective available potential energy, which is well known as an indicator of vertical instability, should be considered in the in-cloud scavenging process to improve the representative regional difference in BC wet scavenging over East Asia. For the first time, this study suggested an effective and straightforward evaluation method for wet scavenging schemes (both below- and in-cloud) by introducing TE along with excluding effects from the inaccurate emission inventories.

领域地球科学
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/271645
专题地球科学
推荐引用方式
GB/T 7714
Yongjoo Choi, Yugo Kanaya, Masayuki Takigawa, Chunmao Zhu, Seung-Myung Park, Atsushi Matsuki, Yasuhiro Sadanaga, Sang-Woo Kim, Xiaole Pan, and Ignacio Pisso. Investigation of the wet removal rate of black carbon in East Asia: validation of a below- and in-cloud wet removal scheme in FLEXPART v10.4[J]. Atmospheric Chemistry and Physics,2020.
APA Yongjoo Choi, Yugo Kanaya, Masayuki Takigawa, Chunmao Zhu, Seung-Myung Park, Atsushi Matsuki, Yasuhiro Sadanaga, Sang-Woo Kim, Xiaole Pan, and Ignacio Pisso.(2020).Investigation of the wet removal rate of black carbon in East Asia: validation of a below- and in-cloud wet removal scheme in FLEXPART v10.4.Atmospheric Chemistry and Physics.
MLA Yongjoo Choi, Yugo Kanaya, Masayuki Takigawa, Chunmao Zhu, Seung-Myung Park, Atsushi Matsuki, Yasuhiro Sadanaga, Sang-Woo Kim, Xiaole Pan, and Ignacio Pisso."Investigation of the wet removal rate of black carbon in East Asia: validation of a below- and in-cloud wet removal scheme in FLEXPART v10.4".Atmospheric Chemistry and Physics (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yongjoo Choi, Yugo Kanaya, Masayuki Takigawa, Chunmao Zhu, Seung-Myung Park, Atsushi Matsuki, Yasuhiro Sadanaga, Sang-Woo Kim, Xiaole Pan, and Ignacio Pisso]的文章
百度学术
百度学术中相似的文章
[Yongjoo Choi, Yugo Kanaya, Masayuki Takigawa, Chunmao Zhu, Seung-Myung Park, Atsushi Matsuki, Yasuhiro Sadanaga, Sang-Woo Kim, Xiaole Pan, and Ignacio Pisso]的文章
必应学术
必应学术中相似的文章
[Yongjoo Choi, Yugo Kanaya, Masayuki Takigawa, Chunmao Zhu, Seung-Myung Park, Atsushi Matsuki, Yasuhiro Sadanaga, Sang-Woo Kim, Xiaole Pan, and Ignacio Pisso]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。